摘要
研究了国产N36锆合金包壳在600、700℃和800℃常压下形成的氧化层微观形貌和表面润湿特性。对N36锆合金样件进行氧化,并测量了氧化层厚度和表面接触角。对样件表面进行扫描电子显微镜(SEM)观测获得样件的表面微观形貌,利用能谱仪(EDS)对样件表面进行局部扫描获得了成分元素种类和含量分布,分析了氧化温度和氧化时间对于N36锆合金表面润湿性的影响规律。结果表明,氧化后的样件表面润湿性增强,氧化层表面裂纹的尺寸、深度、内部结构都会影响表面润湿性。随着氧化温度升高,裂纹尺寸有增加的趋势。在同一氧化温度下,随着氧化时间的增长,样件表面裂纹的尺寸和数量都有增加的趋势。本文研究有助于深入了解N36锆合金包壳材料表面氧化的微观特性。
The microstructure and surface wetting properties of domestic N36 zirconium alloy cladding under atmospheric pressure at 600℃,700℃and 800℃are studied.The N36 sample is oxidized,and the oxide layer thickness and surface contact angle are measured.The surface microstructure of the sample is observed by scanning electron microscope(SEM).The type and content distribution of elements are obtained by local scanning of the sample surface by energy dispersive spectrometer(EDS).The effects of oxidation temperature and oxidation time on the surface wetting properties of N36 zirconium alloy are analyzed.The results show that the surface wetting properties of the oxidized sample is enhanced,and the size,depth and internal structure of the surface crack of the oxide layer will affect the surface wetting properties.With the increase of oxidation temperature,the crack size tends to increase.At the same oxidation temperature,the size and number of surface cracks increase with the increase of oxidation time.The study of this paper is helpful to further understand the microscopic characteristics of surface oxidation of N36 zirconium alloy cladding materials.
作者
钟磊
陈德奇
余红星
刘汉周
陈明镜
邓坚
丁书华
吴丹
Zhong Lei;Chen Deqi;Yu Hongxing;Liu Hanzhou;Chen Mingjing;Deng Jian;Ding Shuhua;Wu Dan(Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Insititute of China,Chengdu,610213,China;Key Laboratory of Low-grade Energy Utilization Technologies and Systems,Chongqing University,Ministry of Education,Chongqing,400044,China)
出处
《核动力工程》
EI
CAS
CSCD
北大核心
2023年第1期37-44,共8页
Nuclear Power Engineering
基金
国家自然科学基金(U1867219)
四川省科技计划(2019ZDZX0001)。
关键词
N36锆合金
氧化层
表面微观形貌
表面润湿特性
N36 zirconium alloy
Oxide layer
Surface microstructure
Surface wetting properties