摘要
【目的】青枯病是由茄科雷尔氏菌(Ralstonia solanacearum,亦称青枯菌)诱导产生的一种高温高湿型土传病害,土壤温度高、湿度大时易于青枯菌的繁殖进而引发青枯病。丛枝菌根真菌(arbuscular mycorrhiza,AM)可能通过调控根际微生物区系对病原体产生影响,我们研究了AM真菌对青枯菌入侵条件下土壤细菌群落的影响。【方法】以番茄(Solanum lycopersicum)为试材进行盆栽试验,供试AM真菌为摩西管柄囊霉(Funneliformis mosseae)M47V,供试病原菌为茄科雷尔氏菌QL-RS 1115(GenBank:GU390462)。催芽5日的番茄种子,接种AM菌剂的为菌根苗,未接种AM真菌的为非菌根苗。在番茄幼苗生长30天时,一半菌根苗和非菌根苗接种青枯菌,另一半不接种青枯菌,共4个处理。在接种青枯菌后1天和14天,采集番茄样品,采用抖土方法采集根际土壤,利用实时荧光PCR分析番茄根际青枯菌数量,采用16S rRNA高通量测序探究土壤细菌群落多样性和结构稳定性。【结果】在接种青枯菌初期(1天),非菌根苗接种青枯菌(TR–AMF)和菌根苗接种青枯菌(TR+AMF)两组处理的根际土壤细菌群落结构发生明显改变,Chao1指数、Shannon指数和Simpson指数显著降低(P<0.05),共现网络的节点数和连接数明显减少,模块化程度降低,共现网络简化表明细菌群落结构的稳定性降低。接种青枯菌14天后,不动杆菌属(Acinetobacter)、鞘氨醇单胞菌属(Sphingomonas)、溶杆菌属(Lysobacter)、假单胞菌属(Pseudomonas)等有益细菌属在感染青枯菌的番茄根际富集,细菌共现网络的节点数和连接数增加,模块化程度提高,表明细菌群落稳定性得到恢复。与非菌根苗相比,菌根苗接种青枯菌(TR+AMF)和菌根苗未接种青枯菌(TN+AMF)两个处理番茄根际土壤中青枯菌丰度显著降低(P<0.05)。AM真菌显著提高Chao1指数和Shannon指数(P<0.05),提高了感染青枯菌番茄根际土壤中黄杆菌属(Flavobacterium)、黄色土源
【Objectives】Bacterial wilt is a soil-borne disease with high temperature and humidity,which is caused by Ralstonia solanacearum.Arbuscular mycorrhiza(AM)fungi have the potential to inhibit specific pathogens in soil by regulating the microbial community of the host rhizosphere.However,the effects of AM fungi on soil bacterial community infected by Ralstonia solanacearum is still unclear.【Methods】Pot culture method was used in the research,the test plant was tomato(Solanum lycopersicum),the AM fungus was F.mosseae M47V,and the pathogen was Ralstonia solanacearum QL-RS 1115(GenBank:GU390462).Mycorrhizal seedlings were prepared by inoculating tomato seeds with F.mosseae M47V after 5 days of germination,and nonmycorrhizal seedlings without AM fungus inoculation.Half of the mycorrhizal and non-mycorrhizal tomato seedlings of 30-days-old were inoculated with pathogen,while the other half consisted of only AM treatments.At 1 and 14 days after inoculation,tomato plants and rhizosphere soil were sampled.Real-time PCR was used to analyze the number of bacterial species in tomato rhizosphere,and 16S rRNA high-throughput sequencing was used to explore the diversity and structural stability of soil bacterial community.【Results】On the 1st day of pathogen inoculation,the Chao1 index,Shannon index and Simpson index of bacterial community structure in rhizosphere soils under the two QL-RS 1115 inoculation treatments reduced significantly(P<0.05),the number of nodes and connections of co-occurrence network significantly decreased,and the degree of modularity decreased.The simplified co-occurrence network indicated that the stability of bacterial community structure decreased.On the 14th day of pathogen inoculation,the beneficial bacteria such as Acinetobacter,Sphingomonas,Lysobacter,and Pseudomonas were enriched in rhizosphere soil,the number of nodes and connections of bacterial cooccurrence network increased,and the degree of modularity increased,indicating that the stability of bacterial community was restored.Compa
作者
张嘉慧
邢佳佳
彭丽媛
邬奇峰
陈俊辉
徐秋芳
秦华
ZHANG Jia-hui;XING Jia-jia;PENG Li-yuan;WU Qi-feng;CHEN Jun-hui;XU Qiu-fang;QIN Hua(College of Environment and Resources,Zhejiang A&F University,Hangzhou,Zhejiang 311300,China;Agroforestry Technology Extension Centre of Lin’an District,Hangzhou,Zhejiang 311300,China)
出处
《植物营养与肥料学报》
CAS
CSCD
北大核心
2023年第1期120-131,共12页
Journal of Plant Nutrition and Fertilizers
基金
浙江省重点研发计划项目(2022C02046)。
关键词
根际土壤
青枯菌
丛枝菌根真菌
黄杆菌属
细菌群落多样性
细菌群落稳定性
rhizosphere soil
Ralstonia solanacearum
arbuscular mycorrhizal fungi
Flavobacterium
bacterial community diversity
bacterial community stability