期刊文献+

非反向Buck-Boost变换器的多模式定频双向ZVS控制策略 被引量:2

MULTIMODE CONSTANT FREQUENCY BIDIRECTIONAL ZVS CONTROL STRATEGY FOR NONINVERTING BUCK-BOOST CONVERTER
下载PDF
导出
摘要 非反向Buck-Boost变换器在可再生能源发电系统、储能系统等电压变化范围较宽的场合得到广泛应用。传统四边形控制方法,能实现非反向Buck-Boost变换器各开关管的ZVS,但存在如下问题:1)大的电感电流引起的较大的导通损耗;2)各模式之间切换引起的输出电压波动;3)需要离线预先计算,使用多维查找表和线性插值法,无在线检测实时计算的闭环,整体控制复杂。该文提出的多模式定频双向ZVS充放电控制策略,解决了以上3个问题。首先,提出多模式定频ZVS恒压放电控制策略,不需要添加任何额外的有源或无源器件,通过将整个宽输入电压范围分成3个模式,并独立分析每个模式的特点,可增加控制条件以简化计算过程,同时实现各模式的在线实时恒压闭环和通态损耗最小ZVS。无需使用多维查找表和线性插值法,整体控制简单容易实现。其次,提出多模式平滑切换控制策略,可保证在模式切换时各开关管占空比跳变前后,闭环输出始终保持稳定。然后,提出多模式定频ZVS恒流充电控制策略,实现了非反向Buck-Boost变换器的双向ZVS充放电控制。最后,给出各模式区间划分的理论依据和电感参数的计算原理,并搭建500 W的实验样机验证了所提出方案的有效性。 Noninverting Buck-Boost converters are widely used in renewable energy power generation systems,energy storage systems and other occasions with a wide voltage variation range.The conventional quadrangle control method can realize ZVS of all switches in noninverting Buck-Boost converter,but it has the following problems:1)the large conduction loss caused by large inductor current;2)the output voltage fluctuation caused by mode switching;3)the use of lookup table and linear interpolation makes the calculation amount large and the overall control complex.The proposed multimode constant frequency ZVS control strategy solves the three problems.Firstly,without any additional active or passive components,by dividing the entire wide input voltage range into three modes,after independently analyzing the characteristics of each mode,the control conditions can be added to simplrfy the calculation process,and the online realtime closed-loop and minimum conduction loss ZVS of each mode can be realized at the same time.There is no need to use multi-dimensional lookup table and linear interpolation,and the overall control is simple and easy to achieve.Secondly,a multimode smooth switching control strategy is proposed,which can ensure that the output voltage is always stable before and after the duty cycle of each switch jumps during mode switching.Then,a multimode constant frequency ZVS constant current charging control strategy is proposed to realize bidirectional ZVS charging and discharging control of noninverting Buck-Boost converter.Finally,the theoretical basis for division of each mode and the calculation principle of inductor parameter is provided,and a 500 W experimental prototype is built to verify the effectiveness of the proposed scheme.
作者 贾磊磊 孙孝峰 潘尧 王洪龙 王武博 李昕 Jia Leilei;Sun Xiaofeng;Pan Yao;Wang Honglong;Wang Wubo;Li Xin(Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province,Yanshan University,Qinhuangdao 066004,China;College of Physics and Electronic Information,Luoyang Normal University,Luoyang 471934,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2022年第12期520-530,共11页 Acta Energiae Solaris Sinica
基金 河北省自然科学基金重点项目(E2021203162) 河北省重点研发计划(19214405D)。
关键词 DC-DC变换器 ZVS 移相 数字控制系统 模式切换 储能 DC-DC converter ZVS phase shift digital control system mode switching energy storage
  • 相关文献

参考文献7

二级参考文献55

  • 1Ren X, Ruan X, Qian H, et al. Three-mode dual-frequency two-edge modulation scheme for four-switch Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 499-509. 被引量:1
  • 2Yao C, Ruan X, Wang X. Isolated Buck-Boost dc-dc converters suitable for wide input-voltage range[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2599-2613. 被引量:1
  • 3Huang P C, Wu W Q, Ho H H, et al. Hybrid Buck-Boost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2010, 25(3): 719-730. 被引量:1
  • 4Lee Y J, Khaligh A, Chakraborty A, et al. A compensation technique for smooth transitions in a noninverting Buck-Boost converter[J]. IEEE Transactions on Power Electronics, 2009, 24(4): 1002-1016. 被引量:1
  • 5Lee Y J, Khaligh A, Chakraborty A, et al. Digital combination of Buck and Boost converters to control a positive Buck-Boost converter and improve the output transientsr[J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1267-1279. 被引量:1
  • 6Sahu B, Rincon-Mora G A. A low voltage, dynamic, noninverting, synchronous Buck-Boost converter for portable applications[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 443-452. 被引量:1
  • 7Qu H, Zhang Y, Yao Y, et al. Analysis of Buck-Boost converter for fuel cell electric vehicles[C]//IEEE International Conference on Vehicular Electronics and Safety. IEEE, 2006: 109-113. 被引量:1
  • 8Ahmad A A, Abrishamifar A. A simple current mode controller for two switches Buck-Boost converter for fuel cells[C]//IEEE Electrical Power Conference. Canada: IEEE, 2007: 363-366. 被引量:1
  • 9Chen J, Maksimovic D, Erickson R W. Anals;sis and design of a low-stress Buck-Boost converter in universal- input PFC applications[J]. IEEE Transactions on Power Electronics, 2006, 21(2): 320-329. 被引量:1
  • 10Andersen G K, Blaabjerg F. Current programmed control of a single-phase two-switch Buck-Boost power factor correction circuit[J]. IEEE Transactions on Power Electronics, 2006, 53(1): 263-271. 被引量:1

共引文献49

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部