期刊文献+

基于R-OSELM的海洋环境数据在线预测

Online prediction of marine environment data based on R-OSELM
下载PDF
导出
摘要 为及时辨识海洋环境的变化趋势和降低长期累积的海洋环境数据对预测模型的影响,提出一种基于循环在线顺序极限学习机(Recurrent Online Sequential Extreme Learning Machine R-OSELM)的海洋环境数据在线预测模型.采用完全在线的方法初始化海洋环境数据训练集,通过在线顺序极限学习机算法对已有的海洋环境数据进行逐块输入,利用极限学习机的自动编码技术与一种归一化方法对输入权重循环处理,实现预测模型的在线更新,最后完成对海洋环境数据的在线预测.使用该模型对溶解氧、叶绿素a、浊度、蓝绿藻进行预测,结果表明R-OSELM模型的预测精度高于对比模型,确定其具备海洋环境数据在线预测能力,可为海洋水域水体富营养化与海洋环境污染预警提供参考. In order to timely identify the changing trend of marine environment and reduce the influence of long-term accumulated marine environment data on prediction model,an online prediction model of marine environment data based on recurrent online sequential extreme learning machine(R-OSELM)is proposed.The marine environment data training set is initialized by an online method,the existing marine environment data is input block by block via online sequential extreme learning machine algorithm,and the input weight is cyclically processed by automatic coding technology of extreme learning machine and a normalized method,which realize the online update of the prediction model.Finally,online prediction of marine environment data is completed.The model is then used to predict dissolved oxygen,chlorophyll A,turbidity,and blue-green algae.The results show that the prediction accuracy of R-OSELM model is better than that of the comparison model.It is verified that the proposed R-OSELM model is capable of online prediction of marine environment data,which can provide support for early warning of marine eutrophication and other marine environmental pollution.
作者 李志刚 刘宇杰 韩国峰 程尚 付多民 李莹琦 LI Zhigang;LIU Yujie;HAN Guofeng;CHENG Shang;FU Duomin;LI Yingqi(College of Artificial Intelligence/Hebei Key Laboratory of Industrial Intelligent Perception,North China University of Science and Technology,Tangshan 063210;Tangshan Employment Service Center,Tangshan 063000)
出处 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第1期104-110,共7页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家重点研发计划(2017YFE0135700) 河北省高等学校科学技术研究项目(ZD2021088) 唐山市科技计划(19150230E)。
关键词 海洋环境数据 时间序列预测 在线预测 在线顺序极限学习机 循环神经网络 marine environment data time series prediction online prediction online sequential extreme learning machine recurrent neural network
  • 相关文献

参考文献5

二级参考文献35

共引文献404

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部