摘要
为了进一步研究自冲铆接技术在航空航天领域的应用,选用TA1钛合金和5A06铝合金航空合金薄板材料作为基板,采用自冲铆接技术进行连接,并通过拉伸试验和扫描电镜试验对接头的静力学性能及微观组织进行系统的研究。结果表明:同质接头的成形对称性良好,铆接较硬板材时易出现空腔;基板的自身性能对接头静载强度的影响较大;5A06-5A06接头的失效位移最大,上板拉脱是由于铆钉周围产生了微裂纹;TA1-TA1接头的静失效载荷最大,缓冲吸震性能较好,其接头铆钉的断裂形式为沿晶断裂和显微孔穴聚集共同作用的混合型断裂。
In order to further study the application of self-piercing riveting technology in aerospace field,TA1 titanium alloy and 5A06 aluminum alloy aviation alloy sheet materials were selected as substrates,and the self-piercing riveting technology was used for connection.Then,the static performance and microstructure of joint were systematically studied by tensile test and SEM test.The results show that the forming symmetry of homogeneous joint is good,and the cavity is easy to appear when riveting the hard plate.The performance of substrate has a great influence on the static strength of joint.The failure displacement of 5A06-5A06 joint is the largest,and the pull-off of upper plate is due to the appearance of micro-cracks around the rivet.The static failure load of TA1-TA1 joint is the largest,and its cushioning and shock absorption performance is good.The rivet fracture mode of the joint is a mixed fracture of intergranular fracture and micro-cavity aggregation.
作者
郭子鑫
赵伦
郭媛媛
齐晓志
刘纪元
霍小乐
林森
Md Shafiqul Islam
Guo Zixin;Zhao Lun;Guo Yuanyuan;Qi Xiaozhi;Liu Jiyuan;Huo Xiaole;Lin Sen;Md Shafiqul Islam(Institute of Intelligent Manufacturing Technology,Shenzhen Polytechnic,Shenzhen 518055,China;Faculty of Materials and Metallurgy,University of Science and Technology Liaoning,Anshan 114051,China;Institute of Advanced Integration Technolgy,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Department of Mechanical Engineering,Blekinge Institute of Technology,Karlskrona 37179,Sweden)
出处
《锻压技术》
CAS
CSCD
北大核心
2022年第12期135-141,共7页
Forging & Stamping Technology
基金
国家自然科学基金资助项目(12104324)
中国博士后科学基金(2021M703392)
深职院博士后启动基金(6022310046K)。
关键词
自冲铆接
钛合金
铝合金
静载强度
缓冲吸震性能
微观组织
self-piercing riveting
titanium alloy
aluminium alloy
static load strength
cushioning and shock absorption performance
microstructure