摘要
In this work,the evolution of melt pool under single-point and single-line printing in the laser engineered net shaping(LENS)process is analyzed.Firstly,the basic structure of the melt pool model of the LENS process is established and the necessary assumptions are made.Then,the establishment process of the multi-physical field model of the melt pool is introduced in detail.It is concluded that the simulation model results are highly consistent with the online measurement experiment results in terms of melt pool profile,space temperature gradient,and time temperature gradient.Meanwhile,some parameters,such as the 3D morphology and surface fluid field of the melt pool,which are not obtained in the online measurement experiment,are analyzed.Finally,the influence of changing the scanning speed on the profile,peak temperature,and temperature gradient of the single-line melt pool is also analyzed,and the following conclusions are obtained:With the increase in scanning speed,the profile of the melt pool gradually becomes slender;The relationship between peak temperature and scanning speed is approximately linear in a certain speed range;The space temperature gradient at the tail of the melt pool under different scanning speeds hardly changes with the scanning speed,and the time temperature gradient at the tail of the melt pool is in direct proportion to the scanning speed.
基金
This work was financially supported by the National Key R&D Program of China(Grant No.2017YFB1103900)
National Natural Science Foundation of China(Grant No.11972084)
National Science and Technology Major Project(2017-VI-0003-0073)
Beijing National Science Foundation(1192014).