摘要
水电站机组日常检修、维护及异常检测的工作量巨大,传统人工监测的工作方式容易导致异常问题被遗漏或误判,采用深度学习算法对数据建模并监测异常情况可以降低成本,提升安全可靠性。结合Transformer网络对长期序列高效准确建模的能力以及GAN(生成对抗网络)架构的数据生成训练策略,利用TransGAN模型对水电机组监测数据进行生成式建模,并主动发现异常数据点。TransGAN模型在水电站机组实测中达到了97.76%的查准率和99.23%的查全率,异常点检出延迟低于0.1 s,实现了实时高精度异常监控功能。
The workloads of routine repair,maintenance,and abnormality detection of hydropower units are heavy.Therefore,traditional manual monitoring may leave out or misjudge abnormalities.Deep learning algorithms are used for data modeling and monitoring abnormalities to reduce costs and improve safety and reliability.With the help of the Transformer neural networks,the efficient and accurate modeling capacity of long-term sequences and the GAN(generative adversarial network)architecture data are used to generate a training strategy.A TransGAN model is used for generative modeling of the measured data of hydropower units and proactively detects abnormal data points.The TransGAN model achieves a detection accuracy rate of 97.76%and a recall rate of 99.23%in hydropower data measurement.The anomaly detection delay is less than 0.1 s.The real-time high-precision anomaly monitoring function is realized.
作者
林烨敏
王宁
邱荣杰
汤宇超
周冠群
李泽洲
王中亚
LIN Yemin;WANG Ning;QIU Rongjie;TANG Yuchao;ZHOU Guanqun;LI Zezhou;WANG Zhongya(Jinshuitan Hydropower Plant of State Grid Zhejiang Electric Power Co.,Ltd.,Lishui,Zhejiang 323000,China;Ningbo Industrial Internet Institute,Ningbo,Zhejiang 315016,China)
出处
《浙江电力》
2023年第1期110-116,共7页
Zhejiang Electric Power
基金
国网浙江省电力有限公司科技项目(B311JS210002)。