摘要
针对复杂背景下多尺度火焰的检测精度低且容易发生误报等问题,提出了一种无锚框结构的新型火灾检测算法。该算法取消了锚框的预设置,采用逐点预测的方式减少网络的超参数,从而有效地减轻了人工先验知识的影响;引入BFP模块优化特征融合,通过对层间信息的整合有效利用了特征的全局信息,增强了多尺度特征的表达能力;设置融合因子控制层间信息传递,在保证特征信息充分融合的同时减弱高层特征的影响,提升了浅层特征对于小目标的学习能力;设计动态采样方式调整训练过程,采用中心采样和置信度原则提升样本点质量,强化了网络对火焰特征的学习效果。在自建数据集上该算法的检测精度达到了96.9%,在公开数据集上也有较好的检测效果。实验结果表明,该算法检测精度高,抗干扰能力强,对于复杂背景下的多尺度火焰具有较好的检测效果,能够较好抑制误报情况的发生,满足实际火灾检测任务的需要。
In view of the low detection accuracy of multi-scale flames and false alarms in complex backgrounds, a new fire detection algorithm with an Anchor Free structure is proposed.The algorithm cancels the anchor and adopts a point-by-point prediction method to reduce the hyperparameters of the network, thus effectively reducing the influence of artificial prior knowledge.The BFP module is introduced to optimize feature fusion, and the integration of inter-layer information effectively utilizes the global information on features and enhances the expression ability of multi-scale features.The fusion factor is set to control the information transfer between layers, which ensures the fusion of feature information while reducing the influence of high-level features, and improves the learning ability of shallow features for small targets.A dynamic sampling method is designed to adjust the training process and strengthen the network’s learning effect on flame characteristics by adopting the principle of central sampling and confidence to improve the quality of the sample points.The algorithm not only achieves 96.9% accuracy on the self-built dataset, but also has a good performance on the public fire dataset.Experimental results show that the proposed algorithm has a high detection accuracy and a strong anti-interference ability.The algorithm has a good detection effect for multi-scale flames in complex backgrounds, can better suppress the occurrence of false alarms, and meets the needs of actual fire detection tasks.
作者
秦瑞
张为
QIN Rui;ZHANG Wei(School of Microelectronics,Tianjin University,Tianjin 300072,China)
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2022年第6期111-119,共9页
Journal of Xidian University
基金
新一代人工智能科技重大专项(19ZXZNGX00030)。
关键词
火灾检测
无锚框网络
多尺度特征融合
动态采样
fire detection
anchor free network
multi-scale feature fusion
dynamic sampling