期刊文献+

Modeling and Adaptive Neural Network Control for a Soft Robotic Arm With Prescribed Motion Constraints 被引量:2

下载PDF
导出
摘要 This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期501-511,共11页 自动化学报(英文版)
基金 supported by the National Natural Science Foundation of China(62103039,62073030) the Scientific and Technological Innovation Foundation of Shunde Graduate School University of Science and Technology Beijing(USTB)(BK21BF003) the Korea Institute of Energy Technology Evaluation and Planning through the Auspices of the Ministry of Trade Industry and Energy Republic of Korea (20213030020160) the Science and Technology Planning Project of Guangzhou City(202102010398,202201010758) the Guangzhou University-Hong Kong University of Science and Technology Joint Research Collaboration Fund(YH202205) Beijing Top Discipline for Artificial Intelligent Science and Engineering University of Science and Technology Beijing。
  • 相关文献

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部