摘要
受树叶平行叶脉启发,在多胞管(multicell tube,MT)外侧柱壳的内表面引入次级肋板构建新型仿生多胞管(bionic multicell tube,BMT),通过诱导改善薄壁结构变形模式提高能量吸收特性。通过3D打印技术制备试样开展准静态压缩试验,结合数值模拟研究了管壁厚度、冲击速度、次级肋板形态等因素对结构变形和能量吸收的影响,结果表明:1)采用倾斜次级肋板增强的BMT结构的平均压溃力和比吸能相比于MT提高约31%~59%和20%~35.2%;次级肋板的引入可诱导薄壁结构在±45°方向交错产生长度较长的塑性铰,薄壁结构弯曲变形能的提升是结构吸能特性增强的主要因素。2)BMT的次级肋板宽度小于1 mm时无法对外侧圆柱壳进行变形诱导,在10~70 m/s加载速度范围内BMT能量吸收特性随着冲击速度增大而增大。3)次级肋板的引入对MT中主级肋板和内侧圆管的能量吸收影响较小,但能够显著提高外侧圆管的吸能水平并降低其变形模式对加载速率的依赖性。
Here,inspired by parallel veins of leaves,a new bionic multicell tube(BMT)was constructed by introducing secondary ribs on inner surface of outer cylindrical shell of a multicell tube(MT)to improve energy absorption characteristics by inducing and improving deformation mode of thin-walled structure.Specimens were prepared with 3D printing technique to conduct quasi-static compression tests.Combining with numerical simulation,effects of pipe wall thickness,impact velocity,secondary rib shape and other factors on structural deformation and energy absorption were studied.The results showed that:1)mean crush force(MCF)and specific energy absorption(SEA)of BMT structure strengthened by inclined secondary rib increase by about 31%-59%and 20%-35.2%,respectively compared with MT;introducing secondary ribs can induce thin-walled structure to produce longer plastic hinges alternately in directions of±45°;improving bending deformation energy of thin-walled structure is the main factor to enhance energy absorption characteristics of structure;2)when secondary rib width of BMT is less than 1 mm,deformation of outer cylindrical shell can’t be induced,and energy absorption characteristics of BMT increase with increase in impact speed in the range of 10-70 m/s;3)introducing secondary rib has less effects on energy absorption of primary rib and inner tube in MT,but it can significantly improve energy absorption level of outer tube and reduce dependence of its deformation mode on loading rate.
作者
胡敬坤
徐鹏
范志强
李耀宙
谭晓丽
HU Jingkun;XU Peng;FAN Zhiqiang;LI Yaozhou;TAN Xiaoli(School of Science,North University of China,Taiyuan 030051,China;School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2023年第1期38-45,共8页
Journal of Vibration and Shock
基金
国家自然科学基金(12072326)
中国博士后科学基金(2021T140562)
中北大学青年学术带头人支持计划(QX202003)
山西省研究生教育创新项目(2021Y627)。