期刊文献+

基于MFCC特征的Wi-Fi信道状态信息人体行为识别方法 被引量:3

HUMAM BEHAVIOR RECOGNITION METHOD BY WI-FI CHANNEL STATE INFORMATION BASED ON MFCC CHARACTERISTICS
下载PDF
导出
摘要 CSI(Channel State Information)可提供被动的人体行为识别方法,根据CSI和声音信号传播相似性和共享频谱带宽的特性将MFCC(Mel-Frequency Cepstral Coefficients)特征提取应用于CSI时间序列,并对复杂场景下的视距和非视距的几种日常行为进行识别。该方法对数据去噪、PCA、相位校准处理,从预处理后的信号中提取了MFCC统计特征和一个无偏移对数频谱能量,用蚁群和粒子群混合优化SVM进行分类识别。实验结果表明,该方法能有效识别复杂场景下的日常行为,在视距情况下,平均识别率达到了91%。 Channel state information(CSI) can provide passive human behavior recognition methods. According to the characteristics of CSI and sound signal propagation similarity and shared spectrum bandwidth, Mel-frequency cepstral coefficients(MFCC) feature extraction was applied to CSI time series, and several daily behaviors of LOS and NLOS in complex scenes were identified. The data denoising, PCA and phase calibration were processed. The MFCC statistical features and an unbiased logarithmic spectrum energy were extracted from the preprocessed signal, and the SVM based on ant colony and particle swarm optimization was used for classification and recognition. The experimental results show that this method can effectively recognize the daily behavior in complex scenes, and the average recognition rate is 91% in the case of LOS distance.
作者 蒙倩霞 余江 常俊 浦钰 Meng Qianxia;Yu Jiang;Chang Jun;Pu Yu(School of Information Science and Engineering,Yunnan University,Kunming 650500,Yunnan,China)
出处 《计算机应用与软件》 北大核心 2022年第12期125-131,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61162004) 云南省教育厅科学研究基金项目(2019J0007) 云南大学研究生科研创新基金项目(2019151)。
关键词 CSI 行为识别 PCA MFCC 支持向量机 CSI Behavior recognition PCA MFCC Support vector machine
  • 相关文献

参考文献5

二级参考文献30

  • 1胡亮,段发阶,丁克勤,叶声华.钢板表面缺陷计算机视觉在线检测系统的研制[J].钢铁,2005,40(2):59-61. 被引量:12
  • 2刘钟,吴杰,张华.热轧带钢表面质量检测系统的工程设计与实践[J].宝钢技术,2005(6):57-61. 被引量:17
  • 3韩钢,李建东,李长乐.自适应OFDM中信号盲检测技术[J].西安电子科技大学学报,2006,33(4):602-606. 被引量:12
  • 4Yang Lihua,Ren Guangliang,Qiu Zhiliang.A novel doppler frequency offset estimation method for DVB-T system in HST environment [ J ]. IEEE Transactions on Broadcast- ing,2012,58 ( 1 ) : 139-143. 被引量:1
  • 5Yerramalli S, Stojanovic M, Mitra U. Partial FFT demodu- lation: a detection method for highly Doppler distorted OFDM systems [ J ]. IEEE Transactions on Signal Pro- cessing,2012,60 ( 11 ) :5906-5918. 被引量:1
  • 6Gorcin A,Arslan H. Identification of OFDM signals under multipath fading channels [ C ]// Proceedings of Military Communication Conference. Piscataway : IEEE,2012 : 1-7. 被引量:1
  • 7Zhang Qi-yun, Dobre O A, Rajan S, et al. Recognition of single and muhicarrier digital modulations [ C ] // Pro- ceedings of Instrumentation and Measurement Technology Conference. Piscataway : IEEE ,2012 : 1676-1680. 被引量:1
  • 8Yiicek T, Arslan H. A novel sub-optimum maximum-like- lihood modulation classification algorithm for adaptive OFDM systems [ C] //Proceedings of Wireless Communi- cations and Networking Conference. Piscataway: IEEE, 2004:739-744. 被引量:1
  • 9Dennis M L, Sie K T, Asoke K, et al. Naive Bayes classifi- cation of adaptive broadband wireless modulation schemes with higher order cumulants[ C] //Proceedings of 2nd In- ternational Conference on Signal Processing and Commu- nication Systems. Piscataway : IEEE ,2008 : 1-5. 被引量:1
  • 10Haring L, Chen Y, Czylwik A. Efficient modulation classi- fication for adaptive wireless OFDM systems in TDD mode [ C]//Proceedings of Wireless Communications and Net- working Conference. Piscataway : IEEE ,2010 : 1-6. 被引量:1

共引文献18

同被引文献29

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部