摘要
主要研究了一类具有内部存储的非均匀流动反应器模型,首先给出了系统古典解的全局存在性。为了克服模型中比率项奇性带来的困难,借助一类非线性特征值问题建立了单种群模型关于扩散系数的阈值动力学。最后研究了系统的一致持续性,给出了系统共存解存在的充分条件。
A class of heterogeneous flow reactor model with internal storage is studied.Firstly,the global existence of the classical solution of the system is given.In order to overcome the difficulty caused by the singularity of the ratio term in the model,a class of nonlinear eigenvalue problems is introduced to establish the threshold dynamics of single species model in terms of the diffusion coefficient.Finally,the uniform persistence of the system is studied and the sufficient conditions for existence of the coexistence solutions are given.
作者
张望
魏茜
聂华
ZHANG Wang;WEI Xi;NIE Hua(School of Mathematics and Statistics,Shaanxi Normal University,Xi'an 710119,Shaanxi,China)
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第1期1-10,共10页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金(12071270)。
关键词
非均匀流动反应器模型
内部存储
非线性特征值问题
共存解
一致持续
a heterogeneous flow reactor model
internal storage
nonlinear eigenvalue problem
coexistence solution
uniform persistence