期刊文献+

基于超像素分割与多信息融合的叠掩和阴影区域检测法

Layover and shadow regions detection based on superpixel segmentation and multi-information fusion
下载PDF
导出
摘要 InSAR信号处理中,叠掩和阴影区域严重破坏了InSAR相位图的连续性,导致高程反演出现错误。本文提出一种基于多信息融合的超像素检测算法,以弥补传统的基于幅度和相干系数阈值检测、恒虚警检测和局部频率检测等逐像素检测方法的不足。由于缺少真实场景的数字高程模型,导致无法验证所提算法在实际应用中的准确性,因此本文提出了基于先进积分方程近似模型的频域回波模拟技术,用于模拟给定场景的SAR回波数据以验证本文算法。仿真数据和TH-2数据试验表明,本文算法能够区分SAR图像中98%以上的叠掩区和阴影区。最后,通过将检测出的叠掩和阴影区域在相位解缠过程中进行掩膜,进一步提高了相位解缠速度和DEM产品精度。 In InSAR signal processing, the continuity of InSAR phase maps is seriously destroyed by layover and shadow regions which results in errors in elevation inversion. In this paper, a multi-information fusion-based superpiexl detection algorithm is proposed to make up for the shortcomings of traditional pixel-by-pixel detection methods based on amplitude and coherence coefficient threshold detection, constant false alarm(CFAR) detection and local frequency detection. Due to the lack of digital elevation model of scene, the accuracy verification of the proposed algorithm in practical applications become impossible. Thus, a frequency domain echo simulation technique is proposed. The proposed algorithm is verified based on an advanced integral equation approximation model(AIEM) for simulating SAR echo data. Simulation data and TH-2 data experiments show that the algorithm can distinguish more than 98% of layover and shadow regions in SAR images. Finally, the DEM products precision and the operation efficiency of phase unwrapping are improved significantly by masking layover and shadow regions during the phase unwrapping process.
作者 刘鹏 李真芳 楼良盛 杨伟明 王震 LIU Peng;LI Zhenfang;LOU Liangsheng;YANG Weiming;WANG Zhen(National Laboratory of Radar Signal Processing,Xidian University,Xi an 710071,China;State Key Laboratory of Geo-information Engineering,Xi'an 710054,China;Xi an Research Institute of Surveying and Mapping,Xi'an 710054,China)
出处 《测绘学报》 EI CSCD 北大核心 2022年第12期2517-2530,共14页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(62031005)。
关键词 天绘二号 叠掩 阴影 简单线性迭代聚类 快速回波仿真 TH-2 layover shadow simple linear iterative clustering(SLIC) fast echo simulation
  • 相关文献

参考文献11

二级参考文献59

共引文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部