摘要
基于维氏金刚石针尖的连续压痕加工方法,在铜基石墨烯表面上成功地制备出了阵列的四棱锥形压痕结构。随后,在结构化的铜基石墨烯表面涂覆一层金膜以作为复合SERS基底。实验结果表明,通过改变相邻间距的四棱锥压痕重叠形成不同形状的阵列微/纳结构,且该微纳结构对带有金膜的铜基石墨烯基底的拉曼强度有影响。在制备微纳结构的过程中,石墨烯出现了堆叠的现象,且随着加工间距的减小,石墨烯的层数有逐渐增加的趋势。其次,通过改变相邻两个压痕之间的间距四棱锥压痕的深宽比(S)对R6G分子的拉曼强度有明显的影响。其中,当S为0.043时,检测R6G分子610 cm^(−1)特征峰的最大拉曼强度为1439 counts。在压痕的材料堆积处及压痕的内部检测R6G分子拉曼强度的标准偏差分别为6.16%和9.19%。在检测农药残留方面,采用该复合基底检测百草枯和西维因的分辨率分别为10^(−5) mol/L和10^(−6) mol/L。该方法是一种可靠的及成本低的制备复合SERS基底的方法,且能够实现对农药残留的低浓度检测。
Based on the tip-based continuous indentation process,the arrayed rectangular pyramidal cavities are successfully machined on the copper-based graphene sample surface.The structured copper-based graphene surface is coated with a thin Au film,which is used as the composite SERS substrate.Different shapes of arrayed micro/nano structures are formed by the overlap of rectangular pyramidal cavities with different adjacent distances using the tip-based continuous indentation process.Experimental results show that the Raman intensity of the Au film coated copper-based graphene substrate is influenced by the topographies of these micro/nano structures.The overlap of graphene is generated during indentation process and the number of layer of graphene is increased with the lower distances.The Raman intensity of R6G molecules is influenced by the ratio(S)of the depth and the width of the rectangular pyramidal cavities with different adjacent distances.The Raman intensity of 610 cm^(−1) R6G molecules is 1439 counts with the S of 0.043.The relative standard deviation(RSD)of the Raman intensity of R6G molecule is 6.16%(pile-ups)and 9.19%(cavities).The detection limit of carbaryl and paraquat is 10^(−6) and 10^(−5) mol/L,respectively.The method proposed is reliable and low cost for the fabrication of composite SERS substrates and can realize the detection of pesticide residues with low concentration.
作者
张景然
陆思伟
贾天棋
石广丰
李晶
张心明
闫永达
ZHANG Jingran;LU Siwei;JIA Tianqi;SHI Guangfeng;LI Jing;ZHANG Xinming;YAN Yongda(College of Mechanical and Electrical Engineering,Changchun University of Science and Technology,Changchun 130022;Center for Precision Engineering,Harbin Institute of Technology,Harbin 150001)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第21期349-360,共12页
Journal of Mechanical Engineering
基金
国家自然科学基金(51905047)
中国博士后基金(2020M670824)
吉林省博士后科研人员择优资助
吉林省青年科技人才托举工程(QT202022)
吉林省科技厅计划(20210101388JC,20190302123GX)资助项目。