摘要
Li metal is the most attractive and promising anode material for next-generation high-energy batteries.However,uncontrolled Li dendrite growth during cycling remains a highly challenging drawback.To solve this problem,silver-coated graphene(Ag/GH)was prepared via a simple liquid-phase reduction method.The effect of Ag/GH on Li deposition behavior was investigated by adjusting the dispersion of Ag nanoparticles(Ag NPs).Subsequently,a composite electrode was fabricated via uniform deposition of metallic Li on Ag/GH.Ag was used as a lithiophilic nucleating agent to ensure uniform deposition of Li and inhibit the growth of Li dendrites on the anode.The prepared composite anode showed a significantly improved performance compared to the unmodified electrode.The symmetric cell comprising this composite electrode exhibited a stable cycling performance with a low hysteresis of~40 mV and a lifetime of>2000 h at a current density of 0.5 mA·cm^(-2).Meanwhile,the discharge capacity reached 0.5 mAh·cm^(-2).In addition,Ag/GH was found to be amenable to large-scale synthesis.Thus,the composite Ag/GH anode exhibited improved performance and the preparation method showed significant potential for application in the manufacture of Li metal batteries.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2022年第10期3391-3400,共10页
稀有金属(英文版)
基金
financially supported by the National Natural Science Foundation of China(No.51972224)
China Postdoctoral Science Foundation(No.2019M661014)。