摘要
Lithium-ion hybrid capacitors(LIHCs) are gaining more attention and applications because they break the performance limitations of supercapacitors(SCs) and lithium-ion batteries(LIBs).However,the difference of energy storage mechanism between anode and cathode is a problem that must be faced by Li-ion hybrid capacitors.The selection of suitable anode and cathode materials is one of the effective ways to solve this problem.Here,we synthesized hollow spherical perovskite fluoride NaNiF3 by a simple and safe method.The specific capacity of NaNiF3 is 142 mAh·g^(-1) at 0.1 A·g^(-1) for 1000 cycles.The mechanism in the cycling of NaNiF3 electrodes was investigated using ex situ X-ray photoelectron spectroscopy(XPS),which is typical of the conversion reaction.Meanwhile,the NaNiF_(3)//activated carbon(AC) Li-ion hybrid capacitor assembled and showed better energy density(69 Wh·kg^(-1)) and power density(5699 W·kg^(-1)).Its capacity retention after long cycling was 79%.The use of NaNiF3 expands the choice of electrode materials for LIHCs and extends their practical applications.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2022年第10期3370-3380,共11页
稀有金属(英文版)
基金
financially supported by the National Natural Science Foundation of China (Nos.51971104 and 51762031)
the Key Research Program of Education Department of Gansu Province (No.GSSYLXM-03)。