摘要
低温环境下,锂离子电池性能下降,充放电困难,严重影响了电动汽车的使用。采用脉冲加热方法是一种解决该问题的有效策略。本工作采用三元锂离子电池,通过对比放电电压曲线和温升曲线的实验值和模拟值建立电化学热耦合模型,仿真分析脉冲加热下锂离子电池的电化学和热特性,研究不同脉冲振幅和环境温度下的产热分布。结果表明,在环境温度为-8℃时,4 C脉冲加热电池的温升是2 C脉冲加热的2.25倍。欧姆热和极化热决定着总产热量的大小。环境温度越低,锂离子电池的极化越严重,但随着脉冲的进行,极化有所平缓。大脉冲电流和较低温度下的脉冲加热有更大的温升速率。脉冲加热后电池表面最高温度在几何中心偏下的位置,且最大温差不超过2℃,具有良好的温度均匀性。
In low-temperature environments,the performance of lithium-ion batteries is degraded,making charging and discharging difficult,which seriously affects the use of electric vehicles.The use of pulse heating is an effective strategy to solve this problem.Therefore,in this paper,a ternary lithium-ion battery was used,after which we established an electrochemicalthermal coupling model by comparing the experimental and simulated values from the discharge voltage and temperature rise curves,including those of the electrochemical and thermal characteristics of the lithium-ion battery.Then,a simulation analysis of an ion battery under pulsed heating was conducted,followed by heat production distribution at ambient temperature.The results showed that the temperature rise of the 4 C pulse-heated battery was 2.25 times higher than that of the 2 C-pulse-heated battery at-8℃ambient temperature,with ohmic heat and polarization heat determining the size of the total heat production.We also observed that although the lower the ambient temperature,the more severe the polarization of the lithium-ion battery,the polarization moderated as the pulse progressed.Pulse heating at a high pulse current and a lower temperature also had a larger temperature rise rate.Hence,after pulse heating,the battery surface’s maximum temperature was at the geometric centre’s lower position,the maximum temperature difference did not exceed 2℃,and the temperature uniformity was good.
作者
张冬冬
文华
欧阳宏伟
ZHANG Dongdong;WEN Hua;OUYANG Hongwei(School of Advanced Manufacturing,Nanchang University,Nanchang 330031,Jiangxi,China)
出处
《储能科学与技术》
CAS
CSCD
北大核心
2022年第12期3957-3964,共8页
Energy Storage Science and Technology
基金
国家自然科学基金地区科学基金项目(52267023)。
关键词
锂离子电池
低温性能
脉冲加热
电化学-热耦合模型
温度分布
lithium-ion battery
low temperature performance
pulse heating
electrochemical-thermal coupled model
temperature distribution