期刊文献+

一种基于深度学习的视频客流密度计算方法 被引量:1

A Deep Learning-Based Calculation Method for Video Passenger Flow Density
下载PDF
导出
摘要 在轨道交通领域客流密度是一项重要监控指标,客流密度评估是客流智能化管控的重要手段,为车站大客流监控提供依据的关键技术。利用车站内传统摄像头,通过图片处理、卷积操作和池化,提出了基于深度学习的视频客流密度计算方法来评估站内区域人数。基于B/S架构设计了客流密度监控平台,通过与实际情况对比,监控平台具有一定的准确性和及时性。 Passenger flow density is an important monitoring indicator in the field of rail transit,and passenger flow density evaluation is an important means of intelligent management of passenger flow,and a key technology that provides a basis for monitoring large passenger flow in stations. The traditional camera is used in the station,through image processing,convolution operation and pooling,a deep learning-based video passenger flow density calculation method is proposed to evaluate the number of people in the station area. Based on the B/S architecture,a passenger flow density monitoring platform is designed. By comparing with the actual situation,the monitoring platform has certain accuracy and timeliness.
作者 黄丰 莫辉强 王伟 欧阳慧 于富洋 张城 叶明 HUANG Feng;MO Huiqiang;WANG Wei;OUYANG Hui;YU Fuyang;ZHANG Cheng;YE Ming(Zhejiang Rail Transit Operation Management Group Co.,Ltd.,Hangzhou 310020;Shenzhen Institute of Beidou Applied Technology,Shenzhen 518055)
出处 《计算机与数字工程》 2022年第10期2149-2152,2165,共5页 Computer & Digital Engineering
关键词 客流密度 深度学习 轨道交通 passenger flow density deep learning rail transit
  • 相关文献

参考文献13

二级参考文献121

  • 1史聪灵,车洪磊,李源,何竞择.基于多数据融合的城市轨道交通客流监测系统研究[J].中国安全生产科学技术,2019,15(S01):5-9. 被引量:16
  • 2贾小勇,徐传胜,白欣.最小二乘法的创立及其思想方法[J].西北大学学报(自然科学版),2006,36(3):507-511. 被引量:139
  • 3李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 4冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003.. 被引量:136
  • 5GUO N N, SONG L, YANG X K, et al. Image Interpola- tion Based on Decomposition[C]// International Symposi- um on Intelligent Signal Processing and Communication Systems (ISPACS), 2010..1-4. 被引量:1
  • 6KIM D, YOON K. High-quality Depth Map Up-sampling Robust to Edge Noise of Range Sensors[C]//Orlando: In-ternational Conference on Image Processing, 2012 553- 556. 被引量:1
  • 7KOPF J, COHEN M F. Joint Bilateral Upsampling[J]. ACM Transaction on Graphics, 2007, 26(8):96-100. 被引量:1
  • 8CHAN D, BUISMAN H, THEOBALT C,et al. A Noise- aware Filter for Real-time Depth Upsampling[C]//Proc. of Workshop on Multi-camera and Multi-model Sensor Fusion Algorithms and Applications, 2008 .. 1-12. 被引量:1
  • 9FERSTL D, REINBACHER C, RANFRL R, et aL Image Guided Depth Upsampling Using Anisotropic Total Gener- alized Variation[C]// IEEE International Conference on Computer Vision (ICCV), 2018:993-1000. 被引量:1
  • 10KIM S Y, HO Y S. Fast Edge-preserving Depth Image Upsampler[J]. IEEE Transactions on Consumer Electron ics,2012,58(3) :971-977. 被引量:1

共引文献995

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部