摘要
多模态知识图谱在传统知识图谱基础上,构建多种模态的实体,以及多模态实体之间的语义关系,能够提供重要的文本、图像以及声音知识,在消除歧义、补充视觉知识等方面具有非常重要的作用。近年来,在农业信息化和智能化飞速发展的背景下,知识图谱技术得到了广泛关注。文章详细介绍了知识图谱和多模态的含义,从图谱构建层面详细叙述了多模态表示学习等技术方法。针对多模态知识图谱在农业领域中的应用,重点总结知识图谱在农业智能问答、病虫害识别、农产品推荐等在农业领域中的应用研究,并对农业多模态知识图谱构建面临的挑战以及多模态知识图谱在农业领域中的发展前景进行展望与分析。
Incorporating entities of multiple modalities and their semantic relationships on the basis of traditional knowledge graph,multimodal knowledge graph provides important information in the form of text,image and sound.It plays an important role in eliminating ambiguity and supplementing visual knowledge.In recent years,under the background of the rapid development of agricultural informatization and intelligence,knowledge graph technology has attracted extensive attention.In this article,the concepts of knowledge graph and multimodality are introduced in detail.Meanwhile,technical methods such as multimodal representation learning are elaborated from the perspective of graph construction.For the applications of multimodal knowledge graph in agriculture,we focus on the research of agricultural intelligent question answering system,plant diseases and pests’identification,agricultural product recommendation and so on.At the same time,the challenges in construction and development of agricultural multimodal knowledge graphs are prospected and analyzed.
作者
陈佳云
徐向英
章永龙
周烨
汪红江
谭昌伟
Chen Jiayun;Xu Xiangying;Zhang Yonglong;Zhou Ye;Wang Hongjiang;Tan Changwei(School of Information Engineering,Yangzhou University,Yangzhou 225127,China;Joint International Research Laboratory of Agriculture&Agri-Product Safety of MOE,Yangzhou 225127,China;Agricultural College,Yangzhou University,Yangzhou 225127,China)
出处
《农业大数据学报》
2022年第3期126-134,共9页
Journal of Agricultural Big Data
基金
国家自然科学基金(32071902)
教育部农业与农产品安全国际合作联合实验室开放课题项目(JILAR-KF202007)
扬州大学交叉学科基金(yzuxk202007,yzuxk202008)
扬州市市校合作资金项目(YZ2021150)。
关键词
多模态
知识图谱
问答
病虫害识别
农业信息化
multi-model
knowledge graph
question answering
pest identification
agriculture informatization