期刊文献+

考虑运输时间的分布式置换流水车间调度灰狼优化算法 被引量:2

Improved Gray Wolf Algorithm for Distributed Permutation Flow Shop Scheduling Considering Delivery Time
下载PDF
导出
摘要 针对分布式置换流水车间调度问题,考虑加工完成后的工件交付运输时间影响,以最小化最大工件交付时间为目标,建立整个工件加工与运输调度的数学模型,分析问题特点并设计了改进的灰狼优化算法。采用基于工件加工位置的随机键编码机制,在优化过程中加入局部搜索算子,平衡算法的全局探索与局部开发最优解的能力。大量算例的求解结果表明,文中改进灰狼算法与传统的遗传算法相比具有明显的优越性。 To solve scheduling problem in distributed permutation flow shop,considering the influence of the delivery time of the work piece after the completion of processing,a mathematical model of the whole work piece processing and delivery scheduling was established with the aim of minimizing maximal delivery time.By the analysis of model characteristics,an improved gray wolf algorithm was proposed.A random key encoding mechanism was adopted based on the work piece processing order.The local search operator was added to the optimization process to balance the ability of the algorithm between global exploration and local development of the optimal solution.A large number of test results show that the improved gray wolf algorithm is significantly superior to the traditional genetic algorithm.
作者 夏霖辉 吴瑶 周学良 王海林 Xia Linhui;Wu Yao;Zhou Xueliang;Wang Hailin(School of Mechanical Engineering,Hubei University of Automotive Technology,Shiyan 442002,China)
出处 《湖北汽车工业学院学报》 2022年第4期68-72,80,共6页 Journal of Hubei University Of Automotive Technology
基金 国家自然科学基金(52075107) 中国博士后科学基金(2018M6409120) 湖北省教育厅社科青年项目(19Q130) 湖北汽车工业学院博士科研启动基金(BK201801,BK201601)。
关键词 分布式调度 置换流水车间调度 运输时间 灰狼算法 distributed scheduling permutation flow shop scheduling delivery time gray wolf algorithm
  • 相关文献

参考文献12

二级参考文献178

  • 1杨敬松,夏秀峰,崔广才.混合遗传算法在分布式车间作业调度中的应用[J].计算机工程与应用,2005,41(19):213-215. 被引量:7
  • 2常俊林,邵惠鹤.两机零等待流水车间调度问题的启发式算法[J].计算机集成制造系统,2005,11(8):1147-1153. 被引量:9
  • 3曹华军,刘飞,何彦.机械加工系统节能降噪型综合任务分配模型及其应用[J].机械工程学报,2006,42(5):97-102. 被引量:9
  • 4周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 5王凌.车问调度及其遗传算法[M].北京:清华大学出版社,2003:1-5. 被引量:5
  • 6KACEM I, HAMMAD I S,BORNE P. Approach by localiza- tion and multi-objective evolutionary optimization for flexible job shop scheduling problems[J]. IEEE Transactions on Sys- tems, Man and Cybernetics, Part C,2002,32(1):408-419. 被引量:1
  • 7ZANDIEH M, KARIMI N. An adaptive multi-population ge- netic algorithm to solve the multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times[J]. Journal of Intelligent Manufacturing,2011,22 (6) :979-989. 被引量:1
  • 8RAJKUMAR M, ASOKAN P, ANIKUMAR N, et al. A GRASP algorithm for flexible job-shop scheduling problem with limited resource constraints[J]. International Journal of Production Research, 2011,49 (8) : 2409-2423. 被引量:1
  • 9ZHANG Q, MANIER H, MANIER M. A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times [J]. Computers and Operations Research, 2011, 39(7): 1713-1723. 被引量:1
  • 10TANG L X, GUAN J, HU G F. Steelmaking and refining coordinated scheduling problem with waiting time and trans- portation consideration [J ]. Computers Industrial Engi- neering,2010,58(2) :239-248. 被引量:1

共引文献151

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部