期刊文献+

矩阵半张量积在求解四元数线性系统中的应用 被引量:1

Application of semi-tensor product of matrices in solving quaternion linear system
下载PDF
导出
摘要 近年来,矩阵半张量积被广泛应用于布尔网络、混合值逻辑网络、电力系统非线性鲁棒稳定控制代数问题等的分析与控制.该文提出了它在四元数线性系统中的一种新的应用.利用矩阵半张量积、四元数矩阵的实向量表示和四元数三对角Hermitian(反Hermitian)矩阵的特殊结构,得到了四元数矩阵方程(AXB,CXD)=(E,F)的最小二乘三对角Hermitian(反Hermitian)解的表达式.给出了四元数矩阵方程相容的充要条件以及在相容条件下的通解表达式.还给出了数值算法,并通过实验验证了该方法的有效性. In recent years,the semi-tensor product of matrices is widely applied to the analysis and control of Boolean network,mix-valued logical network,power system nonlinear robust stability control algebra problem and so on.In this paper,a new kind of applications in quaternion linear system is proposed.By using semi-tensor product,a real vector representation of quaternion,and the special structure of quaternion tridiagonal Hermitian(Anti-Hermitian)matrix,the expression of the least squares tridiagonal Hermitian(Anti-Hermitian)solution of(AXB,CXD)=(E,F)is obtained.As the special case,the equivalent condition for the compatibility of the quaternion matrix equation and the expression of general solutions under the compatibility conditions are given.In addition,the numerical algorithm and experiment are given to verify the effectiveness of this application.
作者 韦安丽 李莹 赵建立 丁文旭 WEI Anli;LI Ying;ZHAO Jianli;DING Wenxu(School of Mathematical Sciences Research Center of Semi-tensor Product of Matrices:Theory and Applications,Liaocheng University,Liaocheng 252000,Shandong,China)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第6期935-941,962,共8页 Journal of Central China Normal University:Natural Sciences
基金 山东省自然科学基金项目(ZR2020MA053) 聊城大学科研基金项目(318011921).
关键词 矩阵半张量积 换位矩阵 四元数线性系统 三对角Hermitian(反Hermitian)矩阵 实向量表示 semi-tensor product of matrices swap matrix quaternion linear system tridiagonal Hermitian(Anti-Hermitian)matrix real vector representation
  • 相关文献

参考文献11

二级参考文献43

共引文献50

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部