期刊文献+

耕深测量装置研究与多元线性回归模型预测分析 被引量:3

Research on Tillage Depth Measuring Device and Prediction Analysis of MLR Model
下载PDF
导出
摘要 针对耕作环境复杂、旋耕机耕作深度测量作业影响因素多等特点,设计了一种自动化测量、省时省力、精度高的便携式耕深深度测量装置。装置搭载于旋耕机后,通过磁致伸缩位移传感器、超声波传感器、姿态传感器和GPS模块等传感器采集数据,结合装置数学模型,融合相关数据,有效获得准确的耕深数据。对超声波传感器和磁致位移传感器采集的数据进行S-G滤波加权融合,有效应对测量过程中泥土飞溅或越坎等数据波动,减小外在因素对测量精度的影响,提高测量的精度。结合多元线性回归预测模型,对滤波融合后的数据进行预测分析,准确预测耕深数据变化值并辅助旋耕机调整机身姿态。试验结果表明:在3组16cm预定耕深下,磁致位移传感器直接采集的数据可以准确地反映数据的变化和趋势,且超声波传感器数据间接辅助磁致伸缩位移传感器数据,还原数据真实变化趋势。研究结果表明:多元线性回归模型预测数据与实际测量的数据之间的平均绝对百分比误差分别为0.03%、0.26%、3.16%,能准确反映实际旋耕机作业耕深数据情况,实现耕深测量预测。 Aiming at the characteristics of complex farming environment and many influencing factors of rotary tiller cultivation depth measurement,a portable cultivation depth measurement device with automatic measurement,time saving and high precision was studied.The device is mounted on the rototiller and collects data through magnetostrictive displacement sensor,ultrasonic sensor,attitude sensor,GPS module and other sensors.Combined with the mathematical model of the device,relevant data are integrated to effectively obtain accurate tillage depth data.The weighted S-G filtering fusion of the data collected by the ultrasonic sensor and the magnetoinduced displacement sensor can effectively deal with the fluctuation of the data such as the soil splash or the overpass,reduce the influence of external factors on the measurement accuracy,and improve the measurement accuracy.Combined with the multiple linear regression prediction model,the data after filtering fusion was predicted and analyzed to accurately predict the variation value of tillage depth data and assist the rotary tiller to adjust the body attitude.The test results show that in three groups of 16cm predetermined tillage depth,the data directly collected by the magnetostrictive displacement sensor can accurately reflect the change and trend of the data,while the ultrasonic sensor data can indirectly assist the magnetostrictive displacement sensor data to restore the real trend of the data.The average absolute percentage error between the predicted data and the actual measured data of the multiple linear regression model is 0.03%,0.26%and 3.16%,respectively,which can accurately reflect the actual tillage depth data of the rotary tiller operation and realize the tillage depth measurement prediction.
作者 王雷 杜治千 汪凌 刘铭 汪丛 Wang Lei;Du Zhiqian;Wang Ling;Liu Ming;Wang Cong(Hubei Agricultural Machinery Engineering Research and Design Institute,Hubei University of Technology,Wuhan 430068,China)
出处 《农机化研究》 北大核心 2023年第6期139-145,共7页 Journal of Agricultural Mechanization Research
基金 国家重点研发计划项目(2017YFD0700304) 湖北省重点研发计划项目(2020BBB063)。
关键词 耕深测量 耕作环境 多元线性回归模型 S-G滤波 tillage depth measurement farming environment MLR model S-G filtering
  • 相关文献

参考文献12

二级参考文献262

共引文献2685

同被引文献43

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部