期刊文献+

基于T-S模糊模型的非线性分布参数系统极点配置P-sD控制

Pole Assignment P-sD Control for Nonlinear Distributed Parameter Systems Based on T-S Fuzzy Model
下载PDF
导出
摘要 采用Lyapunov直接法讨论分布参数系统的稳定性,建立分布参数系统的Lyapunov函数。为保证分布参数系统稳定,应使Lyapunov函数对时间的微分小于0。由于分布参数系统中存在空间一次微分项与二次微分项,Lyapunov函数对时间的微分中将出现常数项与积分项,针对常数项,引入空间一次微分项来抵消;针对积分项,引入对应的状态反馈来使系统稳定。利用边界条件量化Lyapunov函数对时间的微分中的各项,从而设计控制器,这是一种新的设计P-sD状态控制的方式。其中状态反馈的部分采用极点配置的方法来设计,当分布参数系统中出现状态变量的非线性函数时,采用T-S模糊模型表达,可以通过状态变量的线性组合精确描述非线性项,以便极点配置设计状态反馈。针对两个非线性分布参数数学模型进行仿真,结果证明设计的P-sD状态控制器可以使分布参数系统稳定,并达到期望的效果。 The Lyapunov direct method is used to prove the stability of the distributed parameter system,and the Lyapunov function of distributed parameter system is established.In order to ensure the stability of the distributed parameter system,the time differential of Lyapunov function should be less than 0.Because of the space differential term and the second differential term in the distributed parameter system,the constant term and the integral term appears in the time differential of Lyapunov function.For the constant term,a space differential term is introduced to offset;for the integral term,a suitable state feedback is introduced to make the system stable.By using the boundary condition to quantify the constant term in the differential of Lyapunov function to time and canceling it,the state feedback of pole assignment design is more instructive,and this is a new way of designing P-sD state control.The part of state feedback is designed by the method of pole assignment.When the nonlinear function of state variable appears in the distributed parameter system,it is expressed by the T-S fuzzy model,the nonlinear term can be accurately described by linear combination of state variables,so as to design state feedback of pole assignment.The simulation results of two nonlinear distributed parameter models show that the designed P-sD state controller can make the distributed parameter system stable and achieve the desired effect.
作者 党爱然 栾秀春 孙贺涛 王俊玲 周杰 杨志达 DANG Ai-ran;LUAN Xiu-chun;SUN He-tao;WANG Jun-ling;ZHOU Jie;YANG Zhi-da(Heilongjiang Provincial Key Laboratory of Nuclear Power System&Equipment,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Nuclear Safety and Advanced Nuclear Energy Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China;Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,Harbin Engineering University,Harbin 150001,China)
出处 《导航定位与授时》 CSCD 2022年第6期58-67,共10页 Navigation Positioning and Timing
基金 国家自然科学基金(11005023)。
关键词 分布参数系统 LYAPUNOV稳定性 T-S模糊模型 P-sD状态控制 Distributed parameter system Lyapunov stability T-S fuzzy model P-sD state control
  • 相关文献

参考文献10

二级参考文献36

  • 1谢胜利.密度非均匀分布具自反馈控制捕鱼系统平衡态的稳定性[J].自动化学报,1993,19(2):207-212. 被引量:8
  • 2于景元,赵军,朱广田.经济增长中的投资控制模型[J].系统工程理论与实践,1996,16(4):13-20. 被引量:61
  • 3谢胜利,刘永清.种群动力学中含有迁移的赤眼蜂-螟虫生态系统的平衡与稳定[J].应用数学学报,1996,19(3):462-468. 被引量:5
  • 4[1]SAKAWA Y. Feedback stabilization of linear diffusion systems [ J].SIAM J Control and Optimization, 1983,21(5):667-676. 被引量:1
  • 5[2]BALAS M J. Model control of certain flexible dynamic systems [ J].SIAM J Control and Optimization, 1978,16(3) :450- 462. 被引量:1
  • 6[3]BALAS M J. Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters [J].J of Mathematical Analysis and Applications, 1988, 133(2):283 -296. 被引量:1
  • 7[4]BALAS M J. Stable feedback control of linear distributed parameter systems: time and frequency domain conditions [J]. J of Mathematical Analysis and Applications, 1998,225( 1 ):144- 167. 被引量:1
  • 8[5]YOU Yuncheng. Inertial manifolds and stabilization in nonlinear elastic systems with structural damping [ A ]. Differeqntial Equations with Applications to Mathematical Physics [ C ]. Boston: Academic Press, 1993:335 - 346. 被引量:1
  • 9[6]XU Chengzhong, BAILLIEUL J. Stabilizability and stabilization of a rotating body-beam system with torque control [ J ]. IEEE Trans on Automatic Control, 1993,38(12): 1754 - 1765. 被引量:1
  • 10[9]YOSHIYUKI S. Controllability for partial differential equations of parabolic type [J]. Siam J Control and Optimization, 1974, 12(3):389 - 400. 被引量:1

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部