摘要
应用原子分解理论与核函数Ω(x,z)的性质,证明了变量核分数次积分TΩ,α是从变指标Herz-Hardy空间HК_(q)(·)^(α,p)(R^(n))(HК_(q)(·)^(α,p)(R^(n))到变指标弱Herz空间WК_(q)(·)^(α,p)(R^(n))(WК_(q)(·)^(α,p)(R^(n))上的有界算子,从而拓宽了以往的相关研究结果.
By atomic decomposition theory and the property of the function Ω(x,z),it is proved that the fractional integral with variable kernel Tis a bounded operator from variable exponent HerzHardy space HК_(q)(·)^(α,p)(R^(n))(HК_(q)(·)^(α,p)(R^(n)) to variable exponent weak Herz space WК_(q)(·)^(α,p)(R^(n))(WК_(q)(·)^(α,p)(R^(n)),which extends results that have been achieved in previous research.
作者
邵旭馗
陶双平
SHAO Xukui;TAO Shuangping(School of Mathematics and Statistics,Longdong University,Qingyang 745000,China;School of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《应用数学》
北大核心
2023年第1期213-219,共7页
Mathematica Applicata
基金
国家自然科学基金(11561062)
甘肃省自然科学基金(21JR1RM337)
甘肃省高等学校创新基金项目(2021B-270)
陇东学院博士基金(XYBYZK2112,XYBYZK2113)。