期刊文献+

突发事件下双重不确定条件的多式联运路径优化 被引量:2

Research on Route Optimization of Multimodal Transport under Double Uncertain Conditions of Emergencies
下载PDF
导出
摘要 突发事件的发生,对于多式联运网络中节点中转能力与货运需求,都会造成不确定影响,这对于注重经济性与时效性的物流运输无疑是致命的打击。对此,文章讨论以在突发事件发生概率情景下,节点中转能力及货运需求双重不确定条件的多式联运网络路径优化模型,并设计遗传算法进行求解。根据中日多式联运物流网络,证实模型与算法的可行性,并分析不确定因素的影响。结果表明:突发事件的发生会影响多式联运的运输决策;当突发事件的影响导致节点中转能力低于货运需求量时,运输总成本会大大增加,而影响的进一步加大导致节点能力的再次降低不会再造成成本的明显增加;同时节点中转能力的提高却对运输总成本的影响并不显著。由此,企业在决策线路时需要考虑节点应对突发事件的可靠性与货运需求的波动性,保证运输服务安全与质量。 In practice,the occurrence of emergencies will have an uncertain impact on the node transfer capacity and freight demand in the multimodal transport network,which is undoubtedly a fatal blow to the logistics and transportation that focus on economy and timeliness.In this regard,this paper discusses the multimodal transport network path optimization model under the double uncertainty conditions of node transit capacity and freight demand under the probability of emergencies,and designs a genetic algorithm to solve it.According to the Sino-Japanese multimodal transport logistics network,the feasibility of the model and algorithm is verified,and the influence of uncertain factors is analyzed.The results show that the occurrence of emergencies will affect the transportation decision of multimodal transportation;when the impact of emergencies causes the node transfer capacity to be lower than the freight demand,the total transportation cost will increase greatly,and the further increase of the impact will lead to the node capacity.The further reduction of the number of points will not cause a significant increase in cost;at the same time,the improvement of node transfer capacity has no significant impact on the total cost of transportation.Therefore,enterprises need to consider the reliability of nodes to respond to emergencies and the volatility of freight demand when making decisions on routes,so as to ensure the safety and quality of transportation services.
作者 陈知渊 郭唐仪 周洋 CHEN Zhiyuan;GUO Tangyi;ZHOU Yang(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China;Jiangsu Zijinshan Technology Co.,LTD,Nanjing 210008,China)
出处 《物流科技》 2022年第19期79-83,96,共6页 Logistics Sci-Tech
基金 国家重点研发计划项目(2019YFE0213800) 南京市国际合作项目(202002013)。
关键词 多式联运 路径优化 不确定条件 遗传算法 multimodal transport route optimization uncertain conditions genetic algorithm
  • 相关文献

参考文献11

二级参考文献44

  • 1李晓东,匡海波,赵宇哲,刘天寿,武华华.多式联运下的中国东北地区低碳运输实证研究[J].管理评论,2021,33(3):282-291. 被引量:9
  • 2秦绪伟,范玉顺,尹朝万.整车物流网络规划问题的混合粒子群算法研究[J].系统工程理论与实践,2006,26(7):47-53. 被引量:19
  • 3贺竹磬,孙林岩,李晓宏.时效性物流联运方式选择模型及其算法[J].管理科学,2007,20(1):8-12. 被引量:29
  • 4Haghani A, Oh S C. Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations[J].Transportation Research Part A: Policy and Practice, 1996, 30(3):231-250. 被引量:1
  • 5Barbarosoglu G, Arda Y. A two-stage stochastic pro- gramming framework for transportation planning in dis- aster response[J]. Journal of the Operational Research Society, 2004, 55(1): 43-53. 被引量:1
  • 6Yuan Yuan,Wang Dingwei. Path selection model and al- gorithm for emergency logistics management[J]. Com- puter & Industrial Engineering, 2009, 56(3): 1081- 1094. 被引量:1
  • 7Sheu J B. Dynamic relief-demand management for emer- gency logistics operations under large-scale disasters [J]. Transportation Research Part E, 2010, 46(1): 1 -17. 被引量:1
  • 8Yi Wei, Ozdamar L. A dynamic logistics coordination model for evacuation and support in disaster response activities [J]. European Journal of Operational Re- search, 2007, 179(3): 1177-1193. 被引量:1
  • 9Deb K, Agrawal S, Pratap A, et al. A fast elitist non- dominated sorting genetic algorithm for multi-objective optimization: NSGA-II [J]. Lecture Notes in Comput- er Science, 2000, 1917: 849-858. 被引量:1
  • 10Deb K, Pratap A, Agrawal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182-197. 被引量:1

共引文献164

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部