期刊文献+

多肽在微通道内流动与迁移特性的数值模拟

Numerical Simulation of Flow and Migration Characteristics of Peptides in Microchannels
下载PDF
导出
摘要 利用耗散粒子动力学方法,建立了多肽粗粒化模型,分别研究了流场强度、多肽浓度、多肽链长、溶剂性质对多肽在微通道内压力驱动下流动行为的影响。研究发现,多肽溶液表现出剪切稀化行为,随流场强度增强,壁面附近相对浓度降低;随溶液浓度增加,通道中心处流速增大,多肽远离壁面的趋势增强;随链长增加、溶剂溶解能力降低,多肽由壁面向通道中心迁移趋势增强。通过对不同条件下的流场与相对浓度分布进行分析,提示不同条件对多肽在微通道流动与迁移特性具有重要影响,并从流体动力学和流变学角度对多肽在不同条件下的流动与迁移机理给出了解释。 Through dissipative particle dynamics method,a coarse-grained model of polypeptide was established,and the effects of flow field strength,molecular concentration,molecular chain length,and solvent properties on the flow behavior of peptides driven by pressure in microchannels were studied.It is found that the polypeptide solution exhibits shear thinning behavior,with the increase of the flow field strength,the relative concentration near the wall decreases;with the increase of the solution concentration,the flow velocity at the center of the channel increases,and the tendency of the polypeptide to move away from the wall increases;with the increase of the chain length and solvent solubility,the migration tendency of the polypeptide from the wall to the center of the channel is enhanced.Through the analysis of the flow field and relative concentration distribution under different conditions,it is suggested that different conditions have important influence on the flow and migration characteristics of polypeptide microchannels,and the flow and migration mechanism of polypeptides under different conditions were explained from the perspectives of hydrodynamics and rheology.
作者 朱桥辉 许少锋 陆俊杰 毛宇涛 王子恒 Qiaohui Zhu;Shaofeng Xu;Junjie Lu;Yutao Mao;Ziheng Wang(Department of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;School of Mechatronics and Energy Engineering,Ningbo Tech University,Ningbo 315100,China;Faculty of Mechanical Engineering&Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2022年第11期103-109,共7页 Polymer Materials Science & Engineering
基金 浙江省自然科学基金重点项目(LZ21A020001) 国家自然科学基金资助项目(51605432) 宁波市科技创新2025重大专项(2020Z112,2022Z007)。
关键词 微通道 耗散粒子动力学 数值模拟 microchannels kinetics numerical simulation
  • 相关文献

参考文献3

二级参考文献13

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部