摘要
采用自适应模糊C均值聚类(FCM)挖掘土壤重金属的污染程度信息,以实现污染程度分类数的自动获取,确保类别划分的合理性,真实地反映重金属污染的空间聚集特征.以江苏省南京市炼油厂及生活区为研究对象,采集土壤中Cr、Cd、Ni、Pb、Zn、Cu重金属浓度值,首先运用自适应FCM对浓度值进行聚类分析,然后利用地统计学空间插值,揭示污染的空间聚集性.结果表明,研究区存在不同程度的污染,自适应FCM算法比传统聚类算法能更合理地划分重金属污染程度,挖掘出样本潜在的污染信息,可为分析污染成因及土壤环境治理修复提供参考.
Adaptive Fuzzy C-Mean Clustering(FCM)was used to excavate the pollution degree information of heavy metals in soil to achieve automatic acquisition of the classification of pollution degrees,in order to ensure the rationality of classification and truly reflect the spatial aggregation characteristics of heavy metal pollution.Taking the refinery and living area of Nanjing,Jiangsu Province as the research object,the heavy metal concentration values of Cr,Cd,Ni,Pb,Zn and Cu in the soil were collected.Firstly,the concentration values were analyzed by adaptive FCM,and then the spatial interpolation of geostatistical science was used to reveal the spatial agglomeration of pollution.The results indicated that there were different degrees of pollution in the study area;the degree of heavy metal pollution could be divided by the adaptive FCM algorithm more than the traditional clustering algorithm,the potential pollution information of the samples could be excavated,which could provide a reference for analyzing the causes of pollution and soil environmental remediation.
作者
陈红华
王璐
余爱华
CHEN Hong-hua;WANG Lu;YU Ai-hua(School of Civil Engineering,Nanjing Forestry University,Nanjing 210037,China;Key Laboratory for Digital Land and Resources of Jiangxi Province,East China University of Technology,Nanchang 330013,China;The 1st Geological Brigade of Jiangsu Geology&Mineral Exploration Bureau,Nanjing 210041,China)
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2022年第11期5239-5245,共7页
China Environmental Science
基金
东华理工大学江西省数字国土重点实验室开放研究基金资助项目(DLLJ202101)
国家自然科学基金资助项目(42101430)。
关键词
自适应FCM
土壤表层重金属
污染评价
混乱指数法
空间插值
adaptive FCM
soil surface heavy metal
pollution evaluation
confusion index
spatial interpolation