期刊文献+

基于模糊聚类的加权协作定位算法

Weighted Collaborative Positioning Algorithm Based on Fuzzy Clustering
下载PDF
导出
摘要 定位算法作为无线传感器网络的关键技术,在提高节点定位精度和网络效率方面发挥着重要作用。为解决由于定位范围广、信标节点分布随机且稀疏所导致的RSSI测距信息受环境影响定位精度下降的问题,提出了一种基于模糊聚类的协作加权定位算法。使用模糊聚类算法将信标节点分成若干簇,在簇内用三边定位算法对未知节点进行定位,加快定位收敛速度;同时引入RSSI优化机制,通过给RSSI值求得一个加权系数,减小环境因素对本算法产生的影响。仿真结果表明,相比于三边定位算法和协作定位算法,提出的算法定位精确度分别提高了51.25%和20.05%,在定位精度方面更具优势,更适用于信标节点稀疏的应用场景。 As a key technology of wireless sensor networks,positioning algorithm plays an important role in improving node location accuracy and network efficiency.In order to solve the problem that the RSSI ranging information is affected by the environment due to the wide location range,random and sparse distribution of beacon nodes,a cooperative weighted positioning algorithm based on fuzzy clustering is proposed.The beacon node is divided into several clusters by fuzzy clustering algorithm,and the unknown node is located by trilateral positioning algorithm within the cluster to speed up the location convergence.At the same time,the RSSI optimization mechanism is introduced to reduce the impact of environmental factors on the algorithm by obtaining a weighted coefficient for the RSSI value.The simulation results show that compared with the trilateral positioning algorithm and the cooperative positioning algorithm,the positioning accuracy of the proposed algorithm is improved by 51.25%and 20.05%respectively,which is more advantageous in positioning accuracy and more suitable for the application scenarios with sparse beacon nodes.
作者 汪子为 房亮 WANG Zi-wei;FANG Liang(School of Physics and Electronic Information,Yan'an University,Yan'an716000,Shaanxi)
出处 《商洛学院学报》 2022年第6期54-58,共5页 Journal of Shangluo University
关键词 模糊聚类 RSSI权重 三边定位 fuzzy clustering RSSI Weight irilateral positioning
  • 相关文献

参考文献8

二级参考文献86

  • 1万江文,于宁.传感器网络中新入节点的定位[J].传感技术学报,2007,20(10):2319-2323. 被引量:5
  • 2安恂,蒋挺,周正.一种用于无线传感器网络的质心定位算法[J].计算机工程与应用,2007,43(20):136-138. 被引量:35
  • 3Wang G and Yang Ke-hu. A new approach to sensor node localization using RSS measurements in wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1389-1395. 被引量:1
  • 4Gholami M R, Vaghefi R M, and Storm E G. RSS-based sensor localization in the presence of unknown channel parameters[J]. IEEE Transactions on Signal Processing, 2013 61(15): 3752-3759. 被引量:1
  • 5Liu Ye, Luo Xiang-yun, Long Cheng-zhi, et al.. Improved DV-hop localization algorithm based on the ratio of distance and path length[J]. Journal of Information Computational Science, 2012, 9(7): 1875-1882. 被引量:1
  • 6Hu L and Evau D. Localization for mobile sensor networks[C] Tenth International Conference on Mobile Computing and Networking (MobiCom'04), Philadelphia, Pennsylvania, USA, 2004, 9: 45-57. 被引量:1
  • 7Yang Jie, Chen Ying-ying, Trapper W, et al.. Detection and localization of multiple spoofing attackers in wireless networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(1): 44-58. 被引量:1
  • 8Teng Guo-dong, Zheng Kuo-gen, and Dong Wei. MA-MCL: Mobile assisted Monte Carlo localization for wireless sensornetworks[J]. International Journal of Distributed Sensor Networks, 2011, 4: 1-8. 被引量:1
  • 9Baggio A and Langendoen K. Monte Carlo localization for mobile wireless sensor networks[J]. Ad Hoc Networks, 2008, 6(5): 718-733. 被引量:1
  • 10Chang Tai-jung, Wang Kuo-chen, and Hsieh Yi-ling. A color-theory-based energy efficient routing algorithm for mobile wireless sensor networks[J]. Computer Networks, 2008, 52(3): 531-541. 被引量:1

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部