期刊文献+

随机物理过程扰动方案在克拉玛依区域集合预报中的应用研究 被引量:3

Study on the application of stochastic perturbed physics tendency perturbation in the Regional Ensemble Prediction System of Kelamayi
下载PDF
导出
摘要 克拉玛依气象局研发了区域集合预报系统并已实现业务运行,该系统仅采用了集合变换卡尔曼滤波(ETKF)初值扰动,导致离散度发展受到限制,为改善区域集合预报的离散度,本文尝试在初值扰动基础上引入随机物理过程倾向(SPPT)模式扰动方案。通过开展SPPT方案关键参数的敏感性试验,确定了适用于本系统的参数设置,构建了初值-物理过程扰动方案(ETKF-SPPT),并与仅采用初值扰动的集合方案(ETKF)进行了对比。结果表明:ETKF初值扰动方法能够产生具有动力学结构的初值扰动,但是随着预报时效的延长,集合离散度增长很快达到饱和,并在侧边界约束下逐渐减小;ETKF初值扰动结合SPPT模式扰动可使集合离散度在各个预报时效均保持增长状态;集合预报检验结果表明,仅采用ETKF初值扰动的集合预报概率分布可靠性较低,概率预报准确性也较差;ETKF-SPPT方法可获得更好的概率预报结果,可靠性更好,均方根误差更低。对克拉玛依城区一次大风预报个例表明,ETKF方案对大风起风时间和量级把握较差,而ETKF-SPPT可以增加集合离散度,起风时间和风速预报更准确。综合而言,增加SPPT扰动可以有效改善克拉玛依区域集合预报系统的预报技巧。 At present,a Regional Ensemble Prediction System has been developed by the Kelamayi Meteorological Bureau.The system has only adopted the initial condition perturbation of the Ensemble Transform Kalman Filter(ETKF),which causes the system lack spread.In order to improve the performance of this Ensemble Prediction System,the model perturbation method of Stochastic Physics Parameterization Tendency(SPPT)is adopted and tested.Firstly,SPPT scientific parameters for the system are determined and set using a sensitivity test on the critical parameters of SPPT.Secondly,an ensemble forecast experiment test based on the Kelamayi Ensemble Prediction System is conducted to compare the ETKF initial perturbation scheme with the combination of the ETKF initial perturbation and SPPT model perturbation(ETKF-SPPT)scheme.The results show that the ETKF method provides initial condition perturbations with dynamic structure,while the spread saturates within a short forecast lead time and decreases due to the constraint of identical Lateral Boundary Condition(LBC)for all members.Adopting the SPPT model perturbation method significantly improves the ensemble spread for all forecast lead times.Based on the ensemble verification,adding model perturbation to initial perturbation condition improves the probabilistic forecast skill with a higher forecast reliability and a smaller RMSE.Without model perturbation,ETKF’s reliability is low and its root mean square error(RMSE)is relatively large.Additionally investigated and examined is a local gale case that occurred in Kelamayi during the experimental period.Its results show that employing model perturbation significantly improves the ensemble forecast,resulting in a more accurate forecast of the local gale’s magnitude and duration.
作者 史永强 张涵斌 刘郁珏 张歆然 SHI Yongqiang;ZHANG Hanbin;LIU Yujue;ZHANG Xinran(Kelamayi Meteorological Bureau,Kelamayi 934000,China;Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089,China;Insights Value,Beijing 100070,China)
出处 《大气科学学报》 CSCD 北大核心 2022年第6期926-937,共12页 Transactions of Atmospheric Sciences
基金 国家重点研发计划项目(2021YFC3000901) 中国国家铁路集团有限公司科技研究开发计划课题(N2020J005) 国家自然科学基金资助项目(42275201)。
关键词 集合预报 初值扰动 模式扰动 随机物理过程倾向 Ensemble Prediction System initial condition perturbation model perturbation stochastic physics parameterization tendency
  • 相关文献

参考文献15

二级参考文献232

共引文献288

同被引文献59

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部