期刊文献+

基于改进鲸鱼算法优化Bi-LSTM的脱硝系统NO_(x)建模 被引量:6

NO_(x)Modeling of Denitrification System Based on Bi-LSTM Optimized by Improved Whale Algorithm
下载PDF
导出
摘要 针对燃煤电厂SCR脱硝系统入口NO_(x)浓度难以测量的问题,提出了基于改进鲸鱼算法(Improved Whale Optimization Algorithm,IWOA)优化双向长短时记忆神经网络(Bi-directional Long Short-Term Memory Neural Network,Bi-LSTM)的SCR入口NO_(x)浓度预测模型。利用LightGBM进行特征选择,运用最大时间周期的方法计算迟延时间;采用加入Relu层的Bi-LSTM神经网络提取时序特征,建立预测模型,并利用IWOA确定Bi-LSTM的最优超参数,最后与传统Bi-LSTM、LSTM、LightGBM预测模型进行对比验证。仿真结果表明,IWOA-Bi-LSTM模型的均方根误差、平均绝对百分比误差、平均绝对误差最小,能够实现对NO_(x)浓度的准确预测。 Aiming at the problem that it is difficult to measure the NO_(x)concentration at the inlet of the SCR denitrification system of coal-fired power plants,a prediction model of the NO_(x)concentration at the inlet of SCR based on the Bi-directional Long Short-Term Memory Neural Network(Bi-LSTM)optimized by the improved whale algorithm(IWOA)was proposed.We used LightGBM for feature selection and calculated the delay time with the maximum time period method.We used the Bi-LSTM neural network with the Relu layer to extract the timing features and established a prediction model,and used IWOA to determine the optimal hyperparameters of the Bi-LSTM.Finally,we compared the predication result with that of the traditional Bi-LSTM,LSTM,and LightGBM prediction models for validation.The simulation results show that the root mean square error,average absolute percentage error,and average absolute error of the IWOA-Bi-LSTM model are the smallest,which can achieve accurate prediction of NO_(x)concentration.
作者 姚宁 金秀章 李阳峰 YAO Ning;JIN Xiuzhang;LI Yangfeng(School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2022年第6期76-83,共8页 Journal of North China Electric Power University:Natural Science Edition
关键词 NO_(x)建模 鲸鱼优化 特征处理 双向长短时记忆 SG滤波 NO_(x)modeling whale optimization feature processing Bi-LSTM SG filtering
  • 相关文献

参考文献19

二级参考文献177

共引文献474

同被引文献119

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部