期刊文献+

具有Robin边界的坏死核非线性肿瘤生长模型整体解的存在性

Existence of global solution for necrotic core nonlinear tumor growth model with Robin free boundary
下载PDF
导出
摘要 为了研究一个具有坏死核肿瘤生长的Robin自由边界问题,本文构建了包含一个描述营养物浓度变化的非线性抛物型方程和一个描述肿瘤半径的常微分方程.通过用连续函数对模型中的不连续函数进行逼近,并利用Schauder不动点定理和抛物方程的Lp估计,证明了该模型整体解的存在性. To study necrotic tumor growth model with Robin free boundary problem,this paper constructs a nonlinear parabolic equation describing the diffusion of nutrient in the tumor,an ordinary differential equation describing tumor radius. By using the approximation method,applying the Schauder fixed point theorem and Lp-theory for parabolic equation,the existence of global solution of the model is proved.
作者 吴攸 WU You(School of Mathematics and Statistics,Guangdong University of Technology,Guangzhou Guangdong 510520)
出处 《首都师范大学学报(自然科学版)》 2022年第6期8-13,共6页 Journal of Capital Normal University:Natural Science Edition
基金 广东省高校特色创新类项目(2016KTSCX028)。
关键词 坏死核 Robin自由边界 抛物型方程 整体弱解 necrotic core Robin free boundary parabolic equation global weak solution
  • 相关文献

参考文献3

二级参考文献24

  • 1Shang Bin CUI (Shangbin CUI).Analysis of a Free Boundary Problem Modeling Tumor Growth[J].Acta Mathematica Sinica,English Series,2005,21(5):1071-1082. 被引量:10
  • 2卫雪梅,崔尚斌.一个肿瘤生长自由边界问题解的整体存在性和唯一性[J].数学物理学报(A辑),2006,26(1):1-8. 被引量:10
  • 3Greenspan H.Models for the growth of solid tumors by diffusion.Stud Appl Math,1972,51:317-340. 被引量:1
  • 4Greenspan H.On the growth and stability of cell cultures and solid tumors.J Theor Biol,1976,56:229-242. 被引量:1
  • 5Mc Elwain D,Pettet G.Cell migration in multicell spheroids:swimming against the tide.Bull Math Biol,1993,55:655-674. 被引量:1
  • 6Byrne H,Chaplain M.Growth of nonnecrotic tumors in the presence and absence of inhibitors.Math Biosci,1995,130:151-181. 被引量:1
  • 7Byrne H,Chaplain M.Growth of necrotic tumors in the presence and absence of inhibitors.Math Biosci,1996,136:187-216. 被引量:1
  • 8Byrne H,Chaplain M.Free boundary value problems associated with the growth and development of multicellular spheroids.European J Appl Math,1997,8:639-658. 被引量:1
  • 9Word J,King J.Mathematical modeling of vascular tumor growth.IMAJ Math Appl Biol Med,1997,14:53-75. 被引量:1
  • 10Word J,King J.Mathematical modeling of vascular tumor growth Ⅱ:Modeling growth saturation.IMA J Math Appl Biol Med Biol,1998,15:1-42. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部