期刊文献+

含有梯度惩罚的WGAN光伏功率场景生成方法 被引量:5

PV Power Scenario Generation Method Based on Wasserstein Generative Adversarial Networks with Gradient Penalty
下载PDF
导出
摘要 随着光伏发电在电力系统中的日益普及,表征其固有的不确定性变得越来越重要。针对现有光伏场景生成方法过分依赖统计假设和模型训练不稳定等问题,提出了一种含有梯度惩罚的改进生成对抗网络光伏功率场景生成方法。该方法首先以Wasserstein距离作为损失函数设计生成器和判别器两个深度神经网络进行对抗训练,其次在损失函数中引入一种梯度惩罚策略增强模型的Lipschitz连续性约束并创新性地应用于光伏功率的场景生成,提高了场景生成模型的收敛速度和生成场景的质量。所提方法能够捕获光伏出力的非线性,且无需建模假设和复杂的采样技术。算例分析表明,该方法能够精准捕捉光伏功率的分布特性,具有很强的泛化能力,并且优于其他先进的场景生成方法。 With the increasing popularity of PV power generation in power systems,the characterization of its inherent uncertainties becomes increasingly important.Aimed at the problems that the existing PV scenario generation methods rely too much on statistical assumptions and the model training is unstable,a PV power scenario generation method based on an improved generative adversarial network with gradient penalty is proposed.First,two deep neural networks(i.e.,a generator and a discriminator)are designed with the Wasserstein distance as a loss function for adversarial training.Second,a gradient penalty strategy is introduced into the loss function to enhance the Lipschitz continuity constraint of the model,which is innovatively applied to PV power scenario generation,thus improving the convergence speed of the scenario generation model and the quality of generated scenarios.The proposed method can capture the nonlinearity of PV output without modeling assumptions or complex sampling techniques.The results of an example demonstrate that the proposed method can accurately capture the distribution characteristics of PV power while maintaining a strong generalization capability.In addition,it is superior to other state-of-the-art scenario generation methods.
作者 胡石峰 朱瑞金 唐波 HU Shifeng;ZHU Ruijin;TANG Bo(School of Electrical Engineering,Tibet Agricultural and Animal Husbandry University,Linzhi 860000,China)
出处 《电力系统及其自动化学报》 CSCD 北大核心 2022年第11期109-115,共7页 Proceedings of the CSU-EPSA
基金 西藏自治区自然科学基金资助项目(XZ202001ZR0093G)。
关键词 生成对抗网络 场景生成 深度学习 光伏功率 梯度惩罚 generative adversarial networks(GANs) scenario generation deep learning PV power gradient penalty
  • 相关文献

参考文献15

二级参考文献179

  • 1齐波,王一鸣,张鹏,温钊,李成榕,王红斌.基于自决策主动纠偏的电力变压器油色谱诊断模型[J].高电压技术,2020,46(1):23-32. 被引量:16
  • 2杨明,韩学山,王士柏,查浩.不确定运行条件下电力系统鲁棒调度的基础研究[J].中国电机工程学报,2011,31(S1):100-107. 被引量:50
  • 3李俊峰,施鹏飞.中国风电发展报告2010[R].海口:海南出版社,2010. 被引量:12
  • 4Hannele Holttinen. Handling of wind power forecast errors in the Nordic power market[C]//9th International Conference on Probabilistic Methods Applied to Power Systems KTH, Stockholm, Sweden-June 11-15, 2006. 被引量:1
  • 5杨明,范澍,韩学山,等.基于分量稀疏贝叶斯学习的风电场输出功率的概率预测方法[C]//中国电机工程学会电力系统自动化专业委员会三届一次会议,南京,2011. 被引量:1
  • 6WU Lei, SHAHIDEHPOUR M, LI Tao. Stochastic security constrained unit commitment[J]. IEEE Trans on Power Systems, 2007, 22(2): 800-811. 被引量:1
  • 7Bouffard F, Galiana F D. Stochastic security for operations planning with significant wind power generation[J]. IEEE Trans on Power Systems, 2008, 23(2): 306-316. 被引量:1
  • 8WANG Jian-hui, Shahidehpour Moharnmad, LI Zu-yi. Security constrained unit commitment with volatile wind power generation[J]. IEEE Trans on Power Systems, 2008, 23(3): 1319-1327. 被引量:1
  • 9Ruiz P A, Philbrick C R, Zak E, et al. Uncertainty management in the unit commitment problem[J]. IEEE Trans on Power Systems, 2009, 24(2): 642-651. 被引量:1
  • 10Lennart Soder. Simulation of wind speed forecast errors for operation planning of multi-area power systems[C]// 8th International Conference on Probabilistic Methods Applied to Power Systems, Iowa, USA-September 12-16,2004. 被引量:1

共引文献484

同被引文献78

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部