期刊文献+

基于时域扩张残差网络和双分支结构的人体行为识别 被引量:4

Human behavior recognition based on time domain extended residual network and dual branching structure
原文传递
导出
摘要 图卷积网络由于能够直接处理关节点拓扑图在行为识别方面表现出较好的性能而备受关注,但是这类方法中经常存在长时信息依赖建模能力较弱以及未关注空间语义与时间事件变化不均衡问题,对此,提出基于时域扩张残差网络和双分支结构的人体行为识别方法.在时空行为特征提取方法中,不仅用图卷积提取空间域特征,而且用扩张因果卷积和残差连接结构来构建时域扩张残差网络以提取时域特征,该网络能够在未大量增加参数的基础上有效扩大在时域上的感受野,从而更好地获得在时域上的人体关节信息的长时依赖关系.同时构建双分支结构,其中低帧率分支以较少的时间帧数和较多的通道数侧重于提取丰富的空间语义信息,高帧率分支以较多的时间帧数和较少的通道数在保证网络轻量级的前提下有效捕捉人体行为的快速变化.实验结果表明,所提出方法在NTU RGB+D数据集上的准确率高于目前先进的行为识别方法. The graph convolution network has attracted much attention because it can directly process the topological graph of joint points and has good performance in behavior recognition.However,this kind of methods often have the problems of weak long-term information dependence modeling ability and not paying attention to the imbalance between spatial semantics and temporal events.Therefore,a human behavior recognition method based on the timedomain extended residual network and a dual-branch structure is proposed.In the method of spatiotemporal behavior feature extraction,not only the graph convolution is used to extract spatial domain features,but also the extended causal convolution and the residual connection structure are used to construct the time-domain extended residual network to extract time-domain features.The network can effectively expand the receptive field in time domain without increasing a large number of parameters,so as to better obtain the long-term dependence of human joint information in time domain.At the same time,a dual branch structure is constructed,in which the low frame rate branch focuses on extracting rich spatial semantic information with less time frames and more channels,while the high frame rate branch focuses on capturing the rapid changes of human behavior with more time frames and less channels.The accuracy on the NTU RGB+D data set is higher than the current advanced behavior recognition methods.
作者 薛盼盼 刘云 李辉 陶冶 田嘉意 XUE Pan-pan;LIU Yun;LI Hui;TAO Ye;TIAN Jia-yi(College of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266061,China;Engineering Research Center of Intelligence Perception and Autonomous Control of Ministry of Education,Beijing 100124,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第11期2993-3002,共10页 Control and Decision
基金 智能感知与自主控制教育部工程研究中心开放基金项目(K100052021006) 国家自然科学基金项目(61702295) 山东省高等学校优秀青年创新团队计划项目(2019KJN047)。
关键词 图卷积 行为识别 扩张卷积 残差连接 双分支结构 graph convolution behavior recognition dilated causal convolution residual connection double branch structure
  • 相关文献

参考文献7

二级参考文献62

  • 1Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120. 被引量:1
  • 2Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939. 被引量:1
  • 3Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893. 被引量:1
  • 4Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157. 被引量:1
  • 5Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36. 被引量:1
  • 6Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72. 被引量:1
  • 7Rapantzikos K, Avrithis Y, Kollias S. Dense saliency-based spatiotemporal feature points for action recognition. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1454-1461. 被引量:1
  • 8Knopp J, Prasad M, Willems G, Timofte R, Van Gool L. Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the llth European Confer- ence on Computer Vision (ECCV 2010). Berlin Heidelberg: Springer. 2010. 589-602. 被引量:1
  • 9Klaser A, Marszaeek M, Schmid C. A spatio-temporal de- scriptor based on 3D-gradients. In: Proceedings of the 19th British Machine Vision Conference. Leeds: BMVA Press, 2008. 99.1-99.10. 被引量:1
  • 10Wang H, Ullah M M, Klaser A, Laptev I, Schmid C. Evalua- tion of local spatio-temporal features for action recognition. In: Proceedings of the 2009 British Machine Vision Confer- ence. London, UK: BMVA Press, 2009. 124.1-124.11. 被引量:1

共引文献242

同被引文献29

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部