摘要
新能源电力系统中的电力电子设备与电网之间参数不匹配引起的次同步振荡问题日益突出。为了防控次同步振荡,迫切需要快速准确地构建控制器参数稳定域,为次同步振荡在线分析和预警提供支撑。文中提出了一种快速低保守性的稳定性判据。首先,在盖尔原理的基础上,利用2个形式不同的系统回率矩阵具有相同特征值的性质来提高对特征值估计的准确性。然后,采用缩小禁区范围并根据概率论原理推导出4个稳定性指标作为判据,降低了稳定性判断的保守性,从而显著提升了稳定性判断的准确度。与广义奈奎斯特稳定性判据相比,所提稳定性判据不需要逐点采样计算特征值,大大提高了计算速度。直驱风电场并网系统仿真算例表明,所提稳定性判据的计算速度快、准确度高。
The problem of the sub-synchronous oscillation(SSO)caused by the parameter mismatch between the power electronic equipment and the power grid in renewable energy power systems is becoming more and more prominent.In order to prevent and control SSO,it is urgent to construct the controller parameter stability region quickly and accurately to provide support for online analysis and early warning of SSO.A fast low-conservativeness stability criterion is proposed.Firstly,based on the Gershgorin principle,the accuracy of eigenvalue estimation is improved by making use of the property that the two system return ratio matrices of different forms have the same eigenvalue.Then,by reducing the range of the forbidden region,four stability indices are deduced as the criterion according to the principle of probability,which reduces the conservativeness of the stability judgment and improves the accuracy of the stability judgment significantly.Compared with the generalized Nyquist stability criterion,the proposed stability criterion does not need to calculate eigenvalues by point-by-point sampling,which greatly improves the calculation speed.The simulation example of a grid-connected system of direct-driven wind farm shows that the proposed stability criterion has a fast calculation speed and a high accuracy.
作者
徐衍会
高天初
滕先浩
XU Yanhui;GAO Tianchu;TENG Xianhao(School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China;Dalian Power Supply Bureau of State Grid Liaoning Electric Power Co.,Ltd.,Dalian 116000,China)
出处
《电力系统自动化》
EI
CSCD
北大核心
2022年第21期89-96,共8页
Automation of Electric Power Systems
基金
国家重点研发计划资助项目(响应驱动的大电网稳定性智能增强分析与控制技术,2021YFB2400800)。
关键词
直驱风电场
稳定域
盖尔原理
稳定性判据
direct-driven wind farm
stability domain
Gershgorin principle
stability criterion