期刊文献+

基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测 被引量:16

Remaining useful life estimation of aeroengine based on CNN-BiLSTM and attention mechanism
下载PDF
导出
摘要 航空发动机作为飞机的主要动力源,其可靠性是保证飞机安全的关键。剩余使用寿命预测对于提高航空发动机的可用性和降低其寿命周期成本具有重要意义。针对现有的预测算法存在对航空发动机多维数据特征提取不足的问题,提出了一种基于注意力机制的卷积神经网络和双向长短期网络融合模型。首先,采用卷积神经网络提取特征和双向长短期记忆网络获取特征中的长短期依赖关系;其次,使用注意力机制来突出特征中的重要部分,提高模型预测的准确率。为验证所提出方法的有效性,在C-MAPSS数据集上进行了实验。实验表明,模型可以准确地预测出航空发动机的剩余使用寿命,并比传统方法有着更高的预测精度。 As the main power source for aircrafts, the reliability of an aeroengine is critical for ensuring the safety of aircrafts. remaining useful life(RUL) prediction is of great importance for improving the availability of an aero engine and reducing its life cycle cost. For the problem of the shortcomings of existing estimation algorithms in the extraction of multi-dimensional data features, this paper proposes an attention-based CNN-BiLSTM model for RUL estimation. This model using CNN layers to extra feature and BILSTM network can capture the short-term and long-term dependencies of the extracted feature. Afterwards, attention mechanism layer is used to highlight the important features in order to improve model performance. To evaluate the effectiveness of our approach, experiments are carried out on CMAPSS datasets and its result shows that the performance of the proposed approach is superior to other traditional approaches.
作者 张加劲 Zhang Jiajing(School of Aerospace Engineering,Xiamen University,Fujian 361005,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2022年第8期231-237,共7页 Journal of Electronic Measurement and Instrumentation
关键词 航空发动机 剩余寿命 卷积神经网络 注意力机制 双向长短期记忆网络 aeroengine remaining useful life convolution neural network attention mechanism bidirectional long short-term memory network
  • 相关文献

参考文献4

二级参考文献29

共引文献46

同被引文献167

引证文献16

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部