期刊文献+

Model Averaging Multistep Prediction in an Infinite Order Autoregressive Process 被引量:1

原文传递
导出
摘要 The key issue in the frequentist model averaging is the choice of weights.In this paper,the authors advocate an asymptotic framework of mean-squared prediction error(MSPE)and develop a model averaging criterion for multistep prediction in an infinite order autoregressive(AR(∞))process.Under the assumption that the order of the candidate model is bounded,this criterion is proved to be asymptotically optimal,in the sense of achieving the lowest out of sample MSPE for the samerealization prediction.Simulations and real data analysis further demonstrate the effectiveness and the efficiency of the theoretical results.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第5期1875-1901,共27页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11971433 First Class Discipline of Zhejiang-A(Zhejiang Gongshang University-Statistics) the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics) Collaborative Innovation Center of Statistical Data Engineering Technology&Application。
  • 相关文献

参考文献1

二级参考文献3

共引文献1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部