期刊文献+

基于变增益互补滤波的FADS/INS融合方法 被引量:1

Fusion method of FADS/INS based on variable gain complementary filtering
下载PDF
导出
摘要 针对嵌入式大气数据传感(FADS)系统与惯性导航系统(INS)组合滤波计算攻角/侧滑角时,机动飞行和平飞时对滤波常数的大小需求不一致的问题,提出一种滤波常数能够随着飞行状态自适应调整的变增益互补滤波算法。算法可以随着飞行状态的变化,改变滤波常数τ,保持整个飞行阶段具有更好的攻角融合结果,以提高角度的估计精度。同时将测压孔分组计算攻角,对攻角的延迟进行检测,若延迟过大,则判定为该组攻角失效。仿真结果表明:提出的滤波算法能保持整个飞行阶段内的攻角/侧滑角估计结果误差不超过0.2°,并且相比于固定增益互补滤波器,变增益互补滤波的估计误差更小。 In order to solve the problem that the filtering of combined the flush air data sensing(FADS)system and inertial navigation system(INS)calculates the angle of attack/sideslip, the size of filter constant is inconsistent during maneuver flight and flat flight, a variable gain complementary filtering algorithm is proposed, which can adaptively adjust the filtering constant with the flight state.The algorithm can change the filtering constant τ with the flight state changing, in order to improve the estimation precision of the angle, better fusion results of angle of attack are maintained in the whole flight phase.Meanwhile, pressure port is grouped to calculate the angle of attack, and the delay of angle of attack is detected, if the delay is exceeds the allowable limit, it is judged that the group of angle of attack failure.Simulation results show that the proposed filtering algorithm can keep the estimated error of angle of attack/sideslip within 0.2° in the whole flight phase. Moreover, comparing with the constant gain complementary filter, the estimation error of the variable gain complementary filter is smaller.
作者 肖地波 蒋保睿 张勇 王志强 林茜 XIAO Dibo;JIANG Baorui;ZHANG Yong;WANG Zhiqiang;LIN Qian(School of Automation,Chengdu University of Information Technology,Chengdu 610225,China;Unmanned Aerial Vehicles Research Institute of Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Hunan Huanan Optoelectronic Group Co Ltd,Changde 415005,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第12期38-41,46,共5页 Transducer and Microsystem Technologies
基金 四川省科技计划资助项目(2020YFG0177)。
关键词 大气数据传感系统 惯性导航系统 信息融合 变增益滤波 互补滤波 flush air data sensing(FADS)system inertial navigation system(INS) information fusion variable gain filtering complementary filtering
  • 相关文献

参考文献8

二级参考文献49

  • 1郑守铎,陆宇平,叶玮.基于χ~2检验的FADS系统故障检测与管理技术研究[J].计算机测量与控制,2007,15(11):1449-1451. 被引量:7
  • 2Srivastava Ankur,Meade Andrew J,Mokhtarzadeh Ali Arya.A hybrid data-model fusion approach to calibrate a flush air data sensing system[R].Atlanta:AIAA,2010. 被引量:1
  • 3Zheng Chenjun,Lu Yuping,He zhen.Improved algorithms for flush airdata sensing system[J].Chinese Journal of Aeronatics,2006,9(4):334-339. 被引量:1
  • 4Cobleigh Brent R,Whitmore Stephen A,Haering Edward A.Flush airdata sensing(FADS)system calibration procedures and results for blunt forebodies[C]//Dryden Flight Research Center Edwards,California,1999. 被引量:1
  • 5Edward J Artz,Nicholas W Dona,Dr Thomas R.Yechout.NASA orion flush air data sensing system feasibility determination and development[C]//The 52nd Aerospace Sciences Meeting,Maryland,2014. 被引量:1
  • 6肖地波,陆宇平,吴在桂.嵌入式大气数据传感系统求解算法研究[M].北京:科学出版社,2010. 被引量:1
  • 7Stephen W,Moes A,Timothy R. The effects of pressure sensor acoustics on airdata derived from a high-angle-of-attack flush airdata sensing(HI-FADS) system[R].California:NASA TM-101736,Ames Research Center,1991.1-7. 被引量:1
  • 8Anderson J D. J-Hyperonic and high temperature gas dynamics[M].New York:McGraw-Hill Book Company,Inc,1989.301-334. 被引量:1
  • 9Stephen W,Moes A,Timothy R. Measurement uncertainty and feasibility study of a flush airdata system for a hypersonic flight experiment[R].California:NASA TM-4627,Dryden Flight Research Center,1994.7-10. 被引量:1
  • 10姜玉宪;朱恩;王卫红.控制系统仿真[M]北京:北京航空航天大学出版社,199827-33. 被引量:1

共引文献27

同被引文献20

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部