摘要
对采取混合通风及孔板通风策略下的典型隔离病房内气流组织及气溶胶扩散过程开展了数值模拟研究,以探讨通风策略对病房中气溶胶扩散与沉积的影响.进一步研究了气溶胶颗粒粒径及孔板通风的多孔板开孔率对气溶胶分布的影响.利用文献中试验数据验证了所采用数值模型的准确性.结果表明:相比于混合通风,孔板通风策略可以使病房内的流场、温度场分布更加均匀,并且能加速气溶胶颗粒排出,从而有效降低医护人员的交叉感染风险;小粒径气溶胶颗粒更容易受到流场影响,在病房内扩散悬浮,而大粒径的气溶胶颗粒更容易沉积在地面和病床上;当采取孔板通风时,减小开孔率可以加速气溶胶颗粒的沉积和排出,减少颗粒物在室内的悬浮,降低空气中的病毒感染风险.
The effects of the mixing ventilation(MV)and perforated ceiling air supplying ventilation(PCV)strategies on airflow field and aerosol dispersion in a typical isolated ward were numerically investigated.The influence of the aerosol particle size and the porosity of perforated plate on the aerosol distribution in the PCV case were further discussed.The experimental data in the literature was used to validate the accuracy of the numerical models.Simulation results show that compared with the MV case,PCV results in a more uniform flow field and temperature field in the ward,and can increase the discharge speed of aerosol particles,which can effectively reduce the risk of cross-infection among medical staff;small-sized aerosol particles are more likely to be affected by the flow field and diffuse and suspend in the ward,while large-sized aerosol particles are more likely to be deposited on the ground and hospital beds;when using orifice plate ventilation,reducing the opening rate can accelerate the deposition and discharge of aerosol particles,reduce the suspension of particles in the ward,and reduce the risk of virus infection in the air.
作者
王飞飞
牛广
杨涵淋
徐新华
WANG Feifei;NIU Guang;YANG Hanlin;XU Xinhua(Tongji Hospital,School of Environment Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China)
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第10期18-25,共8页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
武汉市科技局应用基础前沿专项资助项目(2020020601012229)
国家自然科学基金资助项目(51506069).
关键词
隔离病房
混合通风
孔板通风
气溶胶
数值模拟
感染风险
isolation ward
mixed air supplying ventilation
perforated ceiling air supplying ventilation
aerosol
numerical simulation
infection risk