期刊文献+

基于多目标优化的星空认知网络鲁棒波束成形算法 被引量:1

Robust Beamforming Algorithm Based on Multi-Objective Optimization in Cognitive Satellite-Aerial Networks
下载PDF
导出
摘要 卫星通信(SC)网和无人机(UAV)通信网之间频谱共享、相互融合,能较大提升频谱效率,有望成为第6代移动通信的关键技术之一。与现有文献不同,本文在系统非完美信道状态信息(CSI)的条件下,考虑了次级用户可达速率最大化和发射功率最小化2种准则,利用加权切比雪夫方法构建满足概率约束的多目标优化问题(MOO);由于该问题较为非凸,利用概率公式、半正定松弛等方法将其转化为凸问题,并进一步通过半正定规划(SDP)求解,得到鲁棒波束成形权矢量,获得2种性能指标间的帕累托最优权衡。计算机仿真验证了所提鲁棒波束成形算法的有效性和优越性。 The spectrum sharing and integration between satellite communication(SC)network and unmanned aerial vehicle(UAV)communication network can significantly improve the spectrum efficiency,and is expected to become one of the key technologies of the 6th generation mobile communication. Different from the existing works,this paper formulates the multi-objective optimization(MOO)problem by using the weighted Chebyshev method based on the assumption that the system is under an imperfect channel state information(CSI) condition and with the consideration of two criteria,i. e.,the achievable rate of the secondary user is maximized and the transmit power is minimized. Since the original MOO problem is nonconvex,methods such as probability formula and semidefinite relaxation are adopted to transform it into a solvable one. The robust beamforming(BF) weight vector is further obtained by applying semidefinite programming(SDP),and thus the Pareto optimal trade-off between the two performance criteria is achieved. Finally,simulation results are given to validate the effectiveness and superiority of the proposed BF scheme.
作者 徐启钊 王子宁 黄硕 程铭 刘笑宇 XU Qizhao;WANG Zining;HUANG Shuo;CHENG Ming;LIU Xiaoyu(College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,Jiangsu,China;Shanghai Aerospace Electronic Technology Institute,Shanghai 201109,China)
出处 《上海航天(中英文)》 CSCD 2022年第5期115-123,共9页 Aerospace Shanghai(Chinese&English)
基金 上海航天科技创新基金(SAST2019-095) 南京邮电大学科研启动基金(NY221009) 江苏省研究生科研创新计划(KYCX20_0724)。
关键词 星空认知网络(CSAN) 鲁棒波束成形(BF) 概率约束 多目标优化问题(MOO) 优化设计 cognitive satellite-aerial network(CSAN) robust beamforming(BF) probability constraint multiobjective optimization(MOO)problem optimization design
  • 相关文献

参考文献2

二级参考文献5

共引文献42

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部