摘要
The commercialized binder carboxymethyl cellulose sodium(CMC-Na)is considered unsuitable for micro-sized SiO_(x) anode as it cannot endure the large volume change to retain the conductive network during repeated charge/discharge cycles.Herein,a small amount of silicon nanoparticles(SiNPs)is added during slurry preparation process as“nano-combs”to unfold the convoluted CMC-Na polymer chains so that they undergo a coilto-stretch transition by interaction between polar groups(e.g.,-OH,-COONa)of polymer and SiNPs’large surface.Through maximizing the utilization of binders,a uniform conductive network is constructed with increased interfacial contact with micro-sized SiO_(x).As a result,the SiO_(x) electrode with optimized(10 wt%)SiNPs addition shows significantly improved initial capacity and cycling performance.Through revisiting CMCNa,a currently deemed unqualified binder in SiO_(x) anode,this work gives a brand-new perspective on the failing mechanism of Si-based anode materials and an improving strategy for electrode preparation.
基金
support from the National Key R&D Program of China(2016YFB0700600,2020YFB0704500)
China Postdoctoral Science Foundation(2019M660317)
Engineering and Physical Sciences Research Council,UK(EP/S000933/1)
Shenzhen Science and Technology Program(Grant No.RCBS20200714114820077).