摘要
针对多阶段任务系统(phased-mission system,PMS)任务可靠性受概率型共因失效(probabilistic common cause failure,PCCF)影响的问题,提出一种基于贝叶斯网络(Bayesian network,BN)的PCCF-PMS分析模型。首先,研究基于BN的PMS表征方法,建立不考虑共因失效的PMS基础BN模型,即PMS-BN。其次,构建共因空间节点,并研究在共因空间节点影响下系统模型参数的修正方法。最后,引入共因节点对PMS-BN模型进行扩展,实现考虑共因失效影响的PMS可靠性量化分析。以地球同步轨道卫星的首次变轨任务为例说明所提模型的正确性,分析结果表明,共因失效问题对于PMS的可靠性存在显著影响。PCCF-PMS模型能够综合处理受概率型与确定型共因失效影响的PMS可靠性分析问题。所提模型适用于共因事件间呈独立、互斥、统计相关等统计关系的情况,且网络模型规模可控。
Aiming at the problem that mission reliability of phased-mission system(PMS)is affected by probabilistic common cause failure(PCCF),a reliability analysis model PCCF-PMS of PMS based on Bayesian network(BN)is proposed.Firstly,the representation method of PMS based on BN is studied,and the basic BN model of PMS without considering common cause failure is established.Secondly,the common cause space node is constructed,and the modification method of system model parameters under the influence of common cause space node is studied.Finally,the common cause node is introduced to extend the PMS-BN model to realize the quantitative reliability analysis of the PMS considering the effect of common cause failure.The correctness of the proposed model is illustrated by an example of the satellite’s first orbit transfer mission.The analysis results show that the common cause failure has a significant impact on the reliability of the PMS.The PCCF-PMS model can deal with the reliability analysis problem of PMS affected by probabilistic and deterministic common cause failures.The model is applicable to the cases where common cause events are independence,dependence or mutual exclusion,and the scale of the network model is controllable.
作者
王鹏
孙紫荆
张帆
肖国松
WANG Peng;SUN Zijing;ZHANG Fan;XIAO Guosong(Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China,Tianjin 300300,China;College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2022年第12期3887-3898,共12页
Systems Engineering and Electronics
关键词
概率型共因失效
多阶段任务系统
贝叶斯网络
可靠性分析
probabilistic common cause failure(PCCF)
phased-mission system(PMS)
Bayesian network(BN)
reliability analysis