期刊文献+

带投资的超额损失再保与障碍分红最优化

Optimal excess of loss reinsurance-barrier dividend strategies with investment
下载PDF
导出
摘要 超额损失再保策略下的最优障碍分红问题迄今鲜有研究.将市场摩擦和终端残值等风险因素与风险资本投资和风险控制策略相结合,研究最优投资-超额损失再保-障碍分红问题.基于动态规划原理建立Hamilton-Jacobi-Bellman方程,通过微分-积分方法求解该方程,获得最优投资-超额损失再保策略和最优障碍分红函数的解析解,并证明最优分红界的存在性和唯一性. The optimal barrier dividend problem under excess of loss reinsurance strategy has rarely been studied so far. We combine the risk factors such as market friction and terminal residual value with risk investment and risk control strategy, and study the resulting optimal investment-excess of loss reinsurance-barrier dividend problem.Based on the dynamic programming principle, we establish the Hamilton-Jacobi-Bellman equation, and obtain the explicit solutions for the optimal investment-excess of loss reinsurance strategy. The optimal dividend function is solved by the differential-integral method. The existence and uniqueness of the optimal dividend boundary is proved.
作者 孙宗岐 杨鹏 吴静 杨阳 SUN Zongqi;YANG Peng;WU Jing;YANG Yang(School of Medical,Xijing University,Xi’an 710123,Shaanxi Province,P.R.China;School of Statistics,Xi’an University of Finance and Economics,Xi’an 710100,Shaanxi Province,P.R.China;School of Science,Xijing University,Xi’an 710123,Shaanxi Province,P.R.China)
出处 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2022年第6期719-724,共6页 Journal of Shenzhen University(Science and Engineering)
基金 教育部人文社科一般研究资助项目(21XJC910001)。
关键词 运筹学与控制论 风险投资 摩擦市场 终端残值 超额损失再保 障碍分红 HAMILTON-JACOBI-BELLMAN方程 operations research and cybernetics risk investment friction market terminal salvage value excess of loss reinsurance barrier dividend Hamilton-Jacobi-Bellman equation
  • 相关文献

参考文献4

二级参考文献31

  • 1毛泽春,刘锦萼.一类索赔次数的回归模型及其在风险分级中的应用[J].应用概率统计,2004,20(4):359-367. 被引量:27
  • 2毛泽春,刘锦萼.索赔次数为复合Poisson-Geometric过程的风险模型及破产概率[J].应用数学学报,2005,28(3):419-428. 被引量:125
  • 3Huang Y J, YuWG, Su H. Studies on a double Poisson-Geometric insurance risk model with interference[J].Discrete Dynamics in Nature and Society, 2013, 13(1): 1-8. 被引量:1
  • 4Jeanblanc-Picque M, Shiryaev A N. Optimization of the flow of dividends[J]. Russian Mathematical Surveys,1995, 50(2): 257-277. 被引量:1
  • 5Asmussen S, Taksar M. Controlled diffusion models for optimal dividend and pay-out[J].Insurance: Mathematicsand Economics, 1997, 20(1): 1-15. 被引量:1
  • 6Lin X, Willmot G E, Drekic S. The classical risk model with a canstant dividend barrier: analysis of theGerber-Shiu discounted penalty function[J]. Insurance: Mathematics and Economics, 2003, 33(3): 551-566. 被引量:1
  • 7Yuen K C, Yin C. On optimality of the barrier strategy for a general levy risk process[J]. Mathematicaland Computer Modelling, 2011, 53(9-10): 1700-1707. 被引量:1
  • 8Ng C Y. On the upcrossing and downcrossing probabilities of a dual risk model with phase-type gains[J].Astin Bull: The Journal of the International Actuarial Association, 2010, 40(40): 281-306. 被引量:1
  • 9Taksar M, Markussen C. Optimal dynamic reinsurance policies for large insurance portfolios[J]. Financeand Stochastic, 2003, 7(1): 97-121. 被引量:1
  • 10Schmidli H. Stochastic Control in Insurance[M]. London: Springer Verlag, 2008. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部