期刊文献+

基于数据微观精分的沥青路面裂缝自动化检测 被引量:2

Automatic detection of asphalt pavement cracks based on data micro-segmentation
下载PDF
导出
摘要 为提高沥青路面裂缝的自动化检测精度,以深度学习模型数据集为对象,结合传统图像处理,提出一种基于裂缝数据进行微观精分的深度学习裂缝数据集处理方法,使深度学习模型能更有针对性地学习沥青路面裂缝的数据特征。在构造数据集时,通过传统的图像处理方法将裂缝宏观精分为龟裂和线性裂缝。在宏观精分基础上,对线性裂缝和龟裂的像素级特征进行微观精分。YOLOv5模型的实验表明:微观精分的裂缝病害模型mAP@.5相较于宏观精分和未精分数据库分别提高8.9%和14.7%,在随机路段上有较好的检测性能。 The purpose of this paper is to improve the accuracy of automatic detection of asphalt pavement cracks. Combined with traditional image processing, this paper takes the data set of the deep learning model as the research object and proposes a deep learning crack data set processing method based on crack data for micro-segmentation. The data characteristics of asphalt pavement cracks can be learned in a more targeted manner. When constructing the dataset, the cracks are macroscopically divided into alligator cracks and linear cracks by traditional image processing methods. On the basis of macro-resolution, micro-resolution is performed on pixel-level features of alligator cracks and linear cracks. The experiments of the YOLOv5 model show that the mAP@.5 of the micro-refined crack disease model is improved by 8.9% and 14.7% respectively compared with the macro-refined and unrefined databases. The micro-refined crack disease model have better detection performance in random road sections.
作者 傅幼华 罗文婷 李林 倪昌双 杨振 FU Youhua;LUO Wenting;LI Lin;NI Changshuang;YANG Zhen(College of Transportation and Civil Engineering,Fujian Agriculture and Forestry University,Fuzhou 350108,China;College of Transportation Engineering,Nanjing University of Technology,Nanjing 211816,China)
出处 《交通科技与经济》 2022年第6期45-52,共8页 Technology & Economy in Areas of Communications
基金 国家重点研发计划项目(2021YFB3202901) 福建省高校产学合作重大项目(2020H6009)。
关键词 宏观精分 微观精分 局部自适应阈值 路面裂缝检测 YOLOv5 macro precision analysis micro precision analysis local adaptive threshold pavement crack detection YOLOv5
  • 相关文献

参考文献10

二级参考文献58

共引文献197

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部