摘要
准确预测机床主轴轴承的温度场,可以判断轴承服役状态,为轴承运行维护奠定基础。通过考虑径向热变形以及轴向热位移对轴承内部几何尺寸的动态影响,修正拟静力学模型;在应用部分法计算轴承整体摩擦生热量的基础上,结合热网络法建立了主轴系统组件复合变形与温度场耦合分析模型,求解了不同工况下不定热量分配的轴承温升曲线,以及相应条件下轴承组件的稳态热量之比。结果表明,主轴轴承在工作状态下,内滚道的生热量总体上高于外滚道的生热量;随着主轴转速和所受轴向力的变化,轴承组件的生热量会按一定规律变化。
Accurate prediction of the temperature field of machine tool spindle bearings can determine the service condition of the bearings and lay the foundation for bearing operation and maintenance.By considering the dynamic effects of radial thermal deformation and axial thermal displacement on the internal geometry of the bearing,the pseudo-statics model is modified,and on the basis of the partial method of calculating the overall frictional heat generation of the bearing,a coupled analysis model of the composite deformation and temperature field of the spindle system components is established in combination with the thermal network method.In turn,the bearing temperature rise curves with variable heat distribution under different working conditions are solved,as well as the ratio of the steady-state heat of the bearing assembly under the corresponding conditions.The re⁃sults show that in the working state of the spindle bearing,the heat generation of the inner raceway is generally higher than that of the outer raceway;with the change of spindle speed and axial force,the heat generation of bearing assembly will change according to a certain rule.
作者
陈非凡
邱明
董艳方
卢团良
陈立海
Chen Feifan;Qiu Ming;Dong Yanfang;Lu Tuanliang;Chen Lihai(School of Mechanical Engineering,Henan University of Science and Technology,Luoyang 471000,China;Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province,Henan University of Science and Technology,Luoyang 471000,China;Hangzhou Bearing Test&Research Center Co.,Ltd.,Hangzhou 310000,China)
出处
《机械传动》
北大核心
2022年第11期34-39,153,共7页
Journal of Mechanical Transmission
基金
国家重点研发计划项目(2018YFB2000504)中科院战略性先导科技专项(XDC04040301)。
关键词
机床主轴轴承
产热规律
热变形
热网络法
Machine tool spindle bearing
Heat generation law
Thermal deformation
Thermal net⁃work method