摘要
The insulated gate bipolar transistor(IGBT)module is one of the most age-affected components in the switch power supply, and its reliability prediction is conducive to timely troubleshooting and reduction in safety risks and unnecessary costs. The pulsed current pattern of the accelerator power supply is different from other converter applications;therefore, this study proposed a lifetime estimation method for IGBT modules in pulsed power supplies for accelerator magnets. The proposed methodology was based on junction temperature calculations using square-wave loss discretization and thermal modeling.Comparison results showed that the junction temperature error between the simulation and IR measurements was less than 3%. An AC power cycling test under real pulsed power supply applications was performed via offline wearout monitoring of the tested power IGBT module. After combining the IGBT4 PC curve and fitting the test results,a simple corrected lifetime model was developed to quantitatively evaluate the lifetime of the IGBT module,which can be employed for the accelerator pulsed power supply in engineering. This method can be applied to other IGBT modules and pulsed power supplies.
基金
supported by the National Key Research and Development Program of China (No. 2019YFA0405402)。