期刊文献+

基于脑电实验的高铁调度员工作负荷识别方法

High speed railway dispatcher workload identification method based on EEG experiment
下载PDF
导出
摘要 高铁调度员的工作负荷与脑力认知资源的占用水平密切相关,过高的工作负荷会影响高铁调度员的工作状态,进而影响高速铁路的运营安全。因此该文设计了一种实时监控高铁调度员工作负荷的实验方法,通过识别高铁调度员的工作负荷等级,提示其及时休息或采取相应安全措施。实验以高铁调度员的主观负荷值、认知资源占用量、工作任务量3项指标为工作负荷的标定指标,以高铁调度工作内容为基础,参照oddball范式,诱发脑电事件相关点位P300成分,并从中提取时域、频域、非线性特征3类指标;以支持向量机为工作负荷识别模型,对脑电信号样本训练集数据进行训练学习,对样本训练集数据的工作负荷等级进行判定,最终得出脑电信号不同特征下的识别准确率、灵敏度数据,以此判定其识别效果。 The workload of high-speed railway dispatchers is closely related to the occupation level of mental cognitive resources.Excessive workload will affect the working state of high-speed railway dispatchers,and then affect the operation safety of high-speed railway.Therefore,this paper designs an experimental method of real-time monitoring the workload of high-speed railway dispatchers to identify the workload level of high-speed railway dispatchers,so as to prompt them to rest in time or take corresponding safety measures.The subjective load value,proportion of cognitive resources and amount of work tasks of high-speed railway dispatchers are taken as the calibration indicators of work load in this experiment.Based on the content of high-speed railway dispatching and referring to the oddball paradigm,P300 components of EEG events are induced,and three kinds of indicators of time domain,frequency domain and nonlinear characteristics are extracted.Taking support vector machine as the workload recognition model,the EEG sample training set data is trained and studied,and the workload level of the sample training set data is determined.Finally,the recognition accuracy and sensitivity under different characteristics of EEG are obtained,so as to determine its recognition effect.
作者 张光远 邓一平 王亚伟 ZHANG Guangyuan;DENG Yiping;WANG Yawei(National Engineering Laboratory of Integrated Transportation Big Data Application Technology,National and Local Joint Engineering Laboratory of Integrated Transportation Intelligence,School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China)
出处 《实验技术与管理》 CAS 北大核心 2022年第10期18-23,48,共7页 Experimental Technology and Management
基金 四川省科技计划项目应用基础研究(2021YJ0043) 西南交通大学本科教育教学研究与改革项目(2103065,1802047)。
关键词 高铁调度员 脑电oddball范式实验 工作负荷等级 支持向量机 high speed railway dispatcher EEG oddball paradigm experiment workload level support vector machine
  • 相关文献

参考文献12

二级参考文献75

  • 1王桂平,陈会昌.儿童自我控制心理机制的理论述评[J].心理科学进展,2004,12(6):868-874. 被引量:30
  • 2李皓明,史蕾,陆爱平.护士职业倦怠的研究进展[J].护理学杂志(综合版),2007,22(10):79-81. 被引量:64
  • 3Central Intelligence Agency. The World Factbook [R]. Washington DC : CIA, 2010. 被引量:1
  • 4NHTSA. Traffic Safety Facts: A Brief Statistical Summary[R]. Washington DC : NHTSA, 2011. 被引量:1
  • 5MAYCOCK G. Sleepiness and Driving:The Experi- ence of UK Car Drivers[J]. Accident Analysis Prevention, 1997,29 (4) :453-462. 被引量:1
  • 6KLAUER S G,DINGUS T A,NEALE V L,et al. The Impact of Driver Inattention on Near-crash/ Crash Risk:An Analysis Using the 100-Car Natural- istic Driving Study Data[R]. Washington DC:NHT- SA, 2006. 被引量:1
  • 7LI W,HE Q C,FAN X M,et al. Evaluation of Driver Fatigue on Two Channels of EEG Data[J]. Neuro science Letters,2012,506(2) :235-239. 被引量:1
  • 8PATEL M,LAL S K L,KAVANAGH D,et al. Ap- plying Neural Network Analysis on Heart Rate Var- iability Data to Assess Driver Fatigue [J]. Expert Systems with Applications, 2011,38 (6) : 7235-7242. 被引量:1
  • 9INGRE M, AKERSTEDT T, PETERS B, et al. Sub- jective Sleepiness, Simulated Driving Performance and Blink Duration: Examining Individual Differences [J].Journal of Sleep Research,2006,15(1) :47-53. 被引量:1
  • 10JO J, LEE S J, PARK K R, et al. Detecting Driver Drowsiness Using Feature-level Fusion and User- specific Classification[J]. Expert Systems with Ap- plications,2014,41 (4) ;1139-1152. 被引量:1

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部