期刊文献+

基于M-LSTM的股票指数日内交易量分布预测研究 被引量:1

Research on Forecasting Intraday Trading Volume of Stock Index Based on M-LSTM
下载PDF
导出
摘要 针对现有预测建模方法难以高效提取日内交易量分布复杂变化规律,影响VWAP策略执行效果的问题,本文提出一种MEMD分解下基于LSTM-Attention的股市指数日内交易量分布预测方法M-LSTM。首先,运用MEMD方法将区间多维交易量时序同步分解为若干个独立的本征模态函数(IMF);其次,对各维度分解中高频IMF进行去噪与重构,构建基于LSTM-Attention神经网络的日内交易量分布预测模型,并深入分析股票指数不同走势阶段下模型预测的有效性;最后,分别采用M-LSTM、ARIMA以及SVR等主流方法,对上证指数等四个代表性指数的日内交易量分布进行预测。实验结果表明:M-LSTM预测误差更小,是一种更有效的股票指数日内交易量分布预测方法。 Aiming at the problem that the existing prediction modeling methods are difficult to efficiently extract the complex change rules of intraday trading volume distribution,which affects the implementation effect of VWAP strategy,this paper proposes a forecasting method M-LSTM of intraday trading volume distribution of stock index based on LSTM-Attention under MEMD decomposition.Firstly,the time series of interval multidimensional trading volume are decomposed into several independent IMF synchronously using MEMD.Secondly,the high-frequency IMF in each dimension decompositionis de-noised and reconstructed,and the intradaytrading volume distribution prediction model based on LSTM-Attention neural network is built,and then the effectiveness of the prediction model is deeply analyzed under different trend stages of stock indexes.Finally,M-LSTM,ARIMA,SVR and other mainstream methods are used to forecast the intraday trading volume distribution of four representative stock indexes such as Shanghai Composite Index.The experimental results show that M-LSTM having smaller prediction erroris a more effective method for predicting intraday trading volume distribution of stock indexes.
作者 贺毅岳 刘磊 高妮 HE Yi-yue;LIU Lei;GAO Ni(School of Economics&Management,Northwest University,Xi’an 710127,China;Economical and Financial Department,Xi'an International Studies University,Xi’an 710128,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2022年第10期196-203,共8页 Operations Research and Management Science
基金 教育部人文社会科学研究青年基金项目(21YJCZH030) 陕西省社会科学基金项目(2021D067) 江苏高校哲学社会科学研究项目(2020SJA1707)。
关键词 日内交易量分布 VWAP策略 多元经验模态分解 LSTM-Attention intraday trading volume distribution VWAP strategy MEMD LSTM-Attention
  • 相关文献

参考文献10

二级参考文献64

  • 1秦宇.应用经验模态分解的上海股票市场价格趋势分解及周期性分析[J].中国管理科学,2008,16(S1):219-225. 被引量:21
  • 2王长江.指数平滑法中平滑系数的选择研究[J].中北大学学报(自然科学版),2006,27(6):558-561. 被引量:96
  • 3Barro R J. The Stock Market and Investment[J].Review of Financial Studies,1990,(01). 被引量:1
  • 4Fama E F. Stock Returns,Expected Returns,and Real Activity[J].Journal of Finance,1990,(04). 被引量:1
  • 5Choi J J,Hauser S,Kopecky K J. Does the Stock Market Predict Real Activity? Time Series Evidence from the G-7 Countries[J].Journal of Banking and Finance,1999,(12). 被引量:1
  • 6Rapach D E. Macro Shocks and Real Stock Prices[J].Journal of Economics and Business,2001,(01). 被引量:1
  • 7Ramsey J B,Lampart C. Decomposition of Economic Relationships by Timescale Using Wavelets:Money and Income[J].Macroeconomic Dynamics,1998,(01). 被引量:1
  • 8Gallegati M. Wavelet Analysis of Stock Returns and Aggregate Economic Activity[J].Computational Statistics and Data Analysis,2008,(06).doi:10.1016/j.csda.2007.07.019. 被引量:1
  • 9Daubechies I. Ten Lectures on Wavelets[M].Philadelphia:Society for Industrial Mathematics,1992. 被引量:1
  • 10Huang NE,Shen Z,Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J].Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1998,(1971). 被引量:1

共引文献143

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部