期刊文献+

基于压缩感知的嵌套FDA雷达距离-角度联合估计

Nested FDA Radar Range-Angle Joint Estimation Based on Compressed Sensing
下载PDF
导出
摘要 针对频率分集技术,与非均匀阵列、压缩感知理论相结合,实现目标距离-角度的联合估计。通过频率分集技术提高信号空间自由度,将距离参数引入导向矢量矩阵,实现距离-角度参数的联合。并结合嵌套阵列,显著提高雷达阵列孔径。该方法针对嵌套阵虚拟阵列流型矩阵的优化过程导致的秩亏缺问题,传统的空间平滑算法会以牺牲部分阵列孔径为代价将单快拍问题转化为多快拍问题,采用正交匹配追踪算法可以实现单快拍下的高精度参数估计,避免了空间平滑技术对阵列孔径的影响。并通过压缩感知理论的应用降低信号维度,减小了计算复杂度。 With frequency diversity technology,combined with non-uniform array and compressed sensing theory,joint estimation of target distance and angle is achieved.Frequency diversity could improve the DOFs of signal and bring range into steering vector,which makes the joint of range and DOA feasible.Employing Nested array,the aperture of radar is significantly enhanced.The process of obtaining coarray will lead to rank deficiency,and spatial smoothing algorithm can resolve this problem at the cost of aperture reduction,transferring the single-snapshot problem into a muti-snapshot problem.OMP algorithm could achieve accurate estimation of parameters without aperture reduction.The application of compress sensing could achieve dimension reduction of signal,which will reduce computational complexity.
作者 庞帅轩 张中方 郭岩 PANG Shuai-xuan;ZHANG Zhong-fang;GUO Yan(ShenYang Aircraft Design And Research Institute of Aviation Industry Corporation of China,ShenYang 110000,China;First Military Representative Office of Military Representative Bureau of AirForce Equipment Department stationed in ShenYang Area,ShenYang 110000,China)
出处 《航空电子技术》 2022年第3期25-32,共8页 Avionics Technology
基金 国家自然科学基金(61773262,62006152) 中国航空科学基金会(20142057006)。
关键词 雷达工程 参数估计 嵌套阵列 压缩感知理论 正交匹配追踪算法 radar engineering parameter stimation nestedarray theory of compress sensing orthogonal matching pursuit(OMP)algorithm
  • 相关文献

参考文献2

二级参考文献18

  • 1何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析[J].电子学报,2005,33(B12):2441-2445. 被引量:97
  • 2V S Chernyak. Fundamentals of Multi-site Radar Systems[ M]. New York:Gordon and Breach Science Publishers, 1998. 被引量:1
  • 3Haimovich A, Rick Blum. MIMO radar: an idea whose time has come[ A ]. Proceedings of the IEEE Radar Conference[ C ]. Philadelphia: IEEE, 2004.71 - 78. 被引量:1
  • 4Haimovich A, Blum R, Cimini R, et al. MIMO radar with widely separated antennas [ J ]. IEEE Signal Processing Magazine, 2008.25(1) :116 - 129. 被引量:1
  • 5Fishler E, Haimovich A, Blum R S, Cimini L J, et al. Spatial diversity in radars-models and detection performance[J]. Transactions on Signal Processing,2006,54(3) :823 - 838. 被引量:1
  • 6Robey F C, Coutts S, Weikle D, et al. MIMO radar theory and experimental results [ A]. Conference Record of the Thirty- Eighth Asilomar Conference on Signals, Systems and Computers [ C ]. Pacific Grove, California: IEEE Computer Society, 2004. 300 - 304. 被引量:1
  • 7Jian Li, Luzhou Xu, Petre Stoica. Range compression and wave- form optimization for MIMO radar: a Cramer-Rao Bound based study[ J]. IEEE Transactions on Signal Processing, 2008, 56 ( 1 ) : 228 - 232. 被引量:1
  • 8Luzhou Xu, Jian Li, Itemtive generalized-likelihood ratio test for MIMO radar[ J].IEEE Transactions on Signal Processing, 2007, 55(6) :2375 - 2385. 被引量:1
  • 9Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products[M]. 4th Edition. New York:Academic Press, 1965. 被引量:1
  • 10Chen Shuxuan, Chen Baixiao, Zhang Shouhong. Study of location based on T-R and T/R-R mode in bistafic radar[ A]. CIE ' 06. International Conference on radar [ C ]. Shanghai: IEEE, 2006.1 -5. 被引量:1

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部