期刊文献+

Experimental and Theoretical Study on Piezoresistive Behavior of Compressible Melamine Sponge Modified by Carbon-based Fillers

原文传递
导出
摘要 High-performance compression sensors have been playing an increasingly important role in human motion detection,health monitoring and human-machine interfaces over recent years.However,it remains a great challenge to develop theoretical models providing practical guidance to the sensor design.Herein,carbon black(CB),carbon nanotubes(CNTs)and graphene nanoplatelets(GNPs)were respectively incorporated into porous melamine sponges by a facile approach of dip-coating to fabricate compression sensors.Uniaxial compression-resistance tests show that the compressibility,stability and piezoresistive sensitivity of sensors could be tailored by the filler type and concentration.A model considering the number of conductive pathways(NCP)is given to describe the relationship between the resistance change and applied compression,showing extremely good agreement with the experimental data.Also,the correlation between the equivalent filler volume fraction and conductivity is described by the other two models proposed by McLachlan and Kirkpatrick,revealing the electrical percolation thresholds(Φc)for the conductive systems under compression.Among the three fillers,CB particles endowed the composite with the best piezoresistive sensitivity but the largestΦc due to its small size and aspect ratio.A combination of experimental study and theoretical model opens up a way of further understanding the piezoresistive sensing behavior as well as optimizing the electrical property and piezoresistivity of compressive conductive polymer composite.
出处 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第11期1503-1512,共10页 高分子科学(英文版)
  • 相关文献

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部