期刊文献+

Involution改进的卷积神经网络人群计数方法 被引量:1

Convolutional Neural Network Method for Crowd Counting Improved using Involution Operator
原文传递
导出
摘要 针对现有人群计数方法大多采用卷积操作提取特征,空间多样性特征信息提取和传递能力不足的问题,提出一种Involution改进的单列深层人群计数网络。该网络以VGG-16为基本框架,引入Involution算子替代卷积操作,并辅以残差链接提高对空间特征信息的感知和传递能力;采用膨胀卷积保持分辨率的同时扩大感受野,丰富深度语义特征;利用联合损失函数监督网络训练,提高计数准确性和全局信息相关性。所提方法在公开数据集ShangHaiTech、UCF-QNRF、UCF_CC_50上的性能较基线模型提升显著,并超越了诸多当前的先进算法。结果表明:所提人群计数方法具有较高的准确性和更好的鲁棒性。 Most existing crowd counting methods use convolution operations to extract features.However,extracting and transmitting spatial diversity feature information are difficult.In this paper,we propose an Involutionimproved singlecolumn deep crowdcounting network to mitigate these problems.Using VGG16 as the backbone,the proposed network uses an Involution operator combined with residual connection to replace the convolution operation,thereby enhancing the perception and transmission for spatial feature information.The dilated convolution was adopted to expand the receptive field while maintaining resolution to enrich deep semantic features.Additionally,we used the joint loss function to supervise the network training,improving counting accuracy and global information correlation.Compared with the baseline model,the performance of the proposed method across the ShangHaiTech,UCFQNRF,and UCF_CC_50 datasets considerably is improved,demonstrating that our approach outperforms many current advanced algorithms.Furthermore,results show that the proposed crowd counting method has higher accuracy and better robustness than other methods.
作者 李兆鑫 卢树华 兰凌强 刘淇缘 Li Zhaoxin;Lu Shuhua;Lan Lingqiang;Liu Qiyuan(College of Information and Cyber Security,People’s Public Security University of China,Beijing 102600,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第18期251-258,共8页 Laser & Optoelectronics Progress
基金 公安学科基础理论研究专项(2021XKZX08) 中央高校基本科研业务经费重大项目(2021JKF102)。
关键词 人群计数 Involution算子 膨胀卷积 全局损失 crowd counting Involution operator dilated convolution global loss
  • 相关文献

参考文献5

二级参考文献8

共引文献39

同被引文献8

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部